A platform for research: civil engineering, architecture and urbanism
Genetic evolutionary structural optimization
AbstractEvolutionary structural optimization (ESO) is based on a simple idea that an optimal structure (with maximum stiffness but minimum weight) can be achieved by gradually removing ineffectively used materials from design domain. In general, the results from ESO are likely to be local optimums other than the global optimum desired. In this paper, the genetic algorithm (GA) is integrated with ESO to form a new algorithm called Genetic Evolutionary Structural Optimization (GESO), which takes the advantage of the excellent behavior of the GA in searching for global optimums. For the developed GESO method, each element in finite element analysis is an individual and has its own fitness value according to the magnitude of its sensitivity number. Then, all elements in an initial domain constitute a whole population in GA. After a number of generations, undeleted elements will converge to the optimal result that will be more likely to be a global optimum than that of ESO. To avoid missing the optimum layout of a structure in the evolution, an interim thickness is introduced into GESO and its validity is demonstrated by an example. A stiffness optimization with weight constraints and a weight optimization with displacement constraints are studied as numerical examples to investigate the effectiveness of GESO by comparison with the performance of ESO. It is shown through the examples that the developed GESO method has powerful capacity in searching for global optimal results and requires less computational effort than ESO and other existing methods.
Genetic evolutionary structural optimization
AbstractEvolutionary structural optimization (ESO) is based on a simple idea that an optimal structure (with maximum stiffness but minimum weight) can be achieved by gradually removing ineffectively used materials from design domain. In general, the results from ESO are likely to be local optimums other than the global optimum desired. In this paper, the genetic algorithm (GA) is integrated with ESO to form a new algorithm called Genetic Evolutionary Structural Optimization (GESO), which takes the advantage of the excellent behavior of the GA in searching for global optimums. For the developed GESO method, each element in finite element analysis is an individual and has its own fitness value according to the magnitude of its sensitivity number. Then, all elements in an initial domain constitute a whole population in GA. After a number of generations, undeleted elements will converge to the optimal result that will be more likely to be a global optimum than that of ESO. To avoid missing the optimum layout of a structure in the evolution, an interim thickness is introduced into GESO and its validity is demonstrated by an example. A stiffness optimization with weight constraints and a weight optimization with displacement constraints are studied as numerical examples to investigate the effectiveness of GESO by comparison with the performance of ESO. It is shown through the examples that the developed GESO method has powerful capacity in searching for global optimal results and requires less computational effort than ESO and other existing methods.
Genetic evolutionary structural optimization
Liu, Xia (author) / Yi, Wei-Jian (author) / Li, Q.S. (author) / Shen, Pu-Sheng (author)
Journal of Constructional Steel Research ; 64 ; 305-311
2007-08-16
7 pages
Article (Journal)
Electronic Resource
English
Genetic evolutionary structural optimization
Online Contents | 2008
|Structural Optimization Using Multi Evolutionary System Co-Exist Genetic Algorithm
British Library Online Contents | 2011
|