A platform for research: civil engineering, architecture and urbanism
Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China
Abstract Organic components are the most abundant fraction of atmospheric submicron particles, but the chemical characteristics of organic aerosols (OA) remain not fully understood. Here, the formation and evolution of secondary organic aerosol (SOA) was evaluated using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer at an urban site in Beijing from 1 to 30 September 2015. The submicron aerosol particles were dominated by organics (accounting for an average of 43.2% of the total mass), followed by nitrate (19.8%), sulfate (19.2%), ammonium (10.2%), black carbon (BC) (8.5%) and chloride (1.4%). Positive matrix factorization of high-resolution organic aerosol mass spectra identified two oxygenated organic aerosol (OOA) components: a less oxidized OOA (LO-OOA) and a more oxidized OOA (MO-OOA). The mass concentrations of MO-OOA and LO-OOA correlated well with the odd oxygen (Ox = O3+nitrogen dioxide (NO2)), with slopes of 1.15 μg m−3 per 10 ppb Ox and 0.48 μg m−3 per 10 ppb Ox, respectively, suggesting the important role of photochemical processing in OOA production. In addition, aqueous-phase processing was also observed to contribute substantially to MO-OOA production when RH > 60%, and RH suppressed LO-OOA formation. Further episode analysis showed that the gas-phase reaction was the main driving force for organic oxidation during the initial pollution stage, during which LO-OOA gradually transformed to MO-OOA as indicated by an increase in the most oxidized ion (CO2 +) and a decrease in a moderately oxidized ion (C2H3O+). Compared with the initial pollution stage, gas-phase oxidation was largely enhanced during the daytime in the peak pollution stage which showed a stronger dependence of MO-OOA on Ox concentration. In addition, enhanced aqueous-phase oxidation and the partitioning process both contributed to the incorporation of oxygenated species into the particle phase during the nighttime in the presence of high aerosol water content.
Highlights Photochemical processing dominant the LO-OOA formation. Photochemical and aqueous-phase processing contribute to the MO-OOA formation. Photochemical processing enhanced in the peak pollution stage during the daytime. LO-OOA transform to MO-OOA as photochemical age increased.
Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China
Abstract Organic components are the most abundant fraction of atmospheric submicron particles, but the chemical characteristics of organic aerosols (OA) remain not fully understood. Here, the formation and evolution of secondary organic aerosol (SOA) was evaluated using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer at an urban site in Beijing from 1 to 30 September 2015. The submicron aerosol particles were dominated by organics (accounting for an average of 43.2% of the total mass), followed by nitrate (19.8%), sulfate (19.2%), ammonium (10.2%), black carbon (BC) (8.5%) and chloride (1.4%). Positive matrix factorization of high-resolution organic aerosol mass spectra identified two oxygenated organic aerosol (OOA) components: a less oxidized OOA (LO-OOA) and a more oxidized OOA (MO-OOA). The mass concentrations of MO-OOA and LO-OOA correlated well with the odd oxygen (Ox = O3+nitrogen dioxide (NO2)), with slopes of 1.15 μg m−3 per 10 ppb Ox and 0.48 μg m−3 per 10 ppb Ox, respectively, suggesting the important role of photochemical processing in OOA production. In addition, aqueous-phase processing was also observed to contribute substantially to MO-OOA production when RH > 60%, and RH suppressed LO-OOA formation. Further episode analysis showed that the gas-phase reaction was the main driving force for organic oxidation during the initial pollution stage, during which LO-OOA gradually transformed to MO-OOA as indicated by an increase in the most oxidized ion (CO2 +) and a decrease in a moderately oxidized ion (C2H3O+). Compared with the initial pollution stage, gas-phase oxidation was largely enhanced during the daytime in the peak pollution stage which showed a stronger dependence of MO-OOA on Ox concentration. In addition, enhanced aqueous-phase oxidation and the partitioning process both contributed to the incorporation of oxygenated species into the particle phase during the nighttime in the presence of high aerosol water content.
Highlights Photochemical processing dominant the LO-OOA formation. Photochemical and aqueous-phase processing contribute to the MO-OOA formation. Photochemical processing enhanced in the peak pollution stage during the daytime. LO-OOA transform to MO-OOA as photochemical age increased.
Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China
Li, Jiayun (author) / Liu, Zirui (author) / Gao, Wenkang (author) / Tang, Guiqian (author) / Hu, Bo (author) / Ma, Zhiqiang (author) / Wang, Yuesi (author)
Atmospheric Environment ; 220
2019-10-21
Article (Journal)
Electronic Resource
English
The PM2.5 threshold for aerosol extinction in the Beijing megacity
Elsevier | 2017
|Role of secondary aerosols in haze formation in summer in the Megacity Beijing
Online Contents | 2015
|Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China
Springer Verlag | 2021
|Transport equity as relative accessibility in a megacity: Beijing
Elsevier | 2020
|