A platform for research: civil engineering, architecture and urbanism
Thermal analysis of vaulted roofs
AbstractIn hot arid regions, cooling buildings by passive techniques is very important regarding energy saving and the need to keep clean the environment. In such areas, domed and vaulted roofs are widely used for centuries, such as in the Middle East region and central part of Iran. In this article analysis is made to explore east–west direction of wind flow around north–south vaulted roofs and flat roof buildings. Combined convection and solar radiation over the roofs is considered to studying thermal performances of vaulted roofs and comparing their heat transfer with flat roofs. Two-dimensional RNG k–ɛ turbulence model is incorporated to predict turbulent flow field as well as separation and recirculating patterns around the vaulted roofs and flat roof buildings. Solar radiation distribution over the roofs is determined based on an appropriate model applicable to hot arid regions of Iran. Pressure differences above the vaulted roof are compared with flat roof for various rim angles and different wind speeds. Heat transfer to the building with respect to time is determined for a certain inside ceiling design temperature, various wind flows and vault shapes, and results are compared with corresponding flat roof. It was found that daily average heat flux for all vaulted roofs, except vaulted roof of rim angle 180° is less than flat roof and it reduces further by increasing wind speed.
Thermal analysis of vaulted roofs
AbstractIn hot arid regions, cooling buildings by passive techniques is very important regarding energy saving and the need to keep clean the environment. In such areas, domed and vaulted roofs are widely used for centuries, such as in the Middle East region and central part of Iran. In this article analysis is made to explore east–west direction of wind flow around north–south vaulted roofs and flat roof buildings. Combined convection and solar radiation over the roofs is considered to studying thermal performances of vaulted roofs and comparing their heat transfer with flat roofs. Two-dimensional RNG k–ɛ turbulence model is incorporated to predict turbulent flow field as well as separation and recirculating patterns around the vaulted roofs and flat roof buildings. Solar radiation distribution over the roofs is determined based on an appropriate model applicable to hot arid regions of Iran. Pressure differences above the vaulted roof are compared with flat roof for various rim angles and different wind speeds. Heat transfer to the building with respect to time is determined for a certain inside ceiling design temperature, various wind flows and vault shapes, and results are compared with corresponding flat roof. It was found that daily average heat flux for all vaulted roofs, except vaulted roof of rim angle 180° is less than flat roof and it reduces further by increasing wind speed.
Thermal analysis of vaulted roofs
Hadavand, M. (author) / Yaghoubi, M. (author) / Emdad, H. (author)
Energy and Buildings ; 40 ; 265-275
2007-02-16
11 pages
Article (Journal)
Electronic Resource
English
Thermal analysis of vaulted roofs
Online Contents | 2008
|Analytical design of vaulted roofs
Engineering Index Backfile | 1908
|Mean loads on vaulted canopy roofs
Elsevier | 2013
|Mean loads on vaulted canopy roofs
Online Contents | 2013
|