A platform for research: civil engineering, architecture and urbanism
Modelling an anthropogenic effect of a tidal basin evolution applying tidal and wave boundary forcings: Ley Bay, East Frisian Wadden Sea
Abstract Potential physical impacts of an anthropogenic effect on a tidal basin evolution are investigated applying the Delft3D model suite under both tidal and wave boundary forcings. Study area is based on a peninsula construction of the Ley Bay in the East Frisian Wadden Sea. Model simulation spans from 1975 to 1990 in two stages of which the second stage begins with the implemented peninsula on the 1984 predicted morphology. The model bed consists of initially distributed three sediment fractions. Sensitivity of the Ley Bay evolution is analysed under three different sediment transport formulations: 1) Van Rijn, 1993 (VR93), 2) Soulsby, 1997 (SVR) and 3) Van Rijn et al., 2004 (VR04). Offshore tides and waves are transformed up to the model boundaries via a nested modelling approach and a statistically derived highly schematised wave climate is adopted in the simulations. Predicted morphologies indicate lower agreement with the measured morphology due to including very sparse data. Despite this discrepancy, they reproduce the major changes in the Ley Bay caused by the peninsula construction while each formula results in a slightly different channel/shoal pattern. Predicted evolution under the SVR shows the strongest sediment exporting system and therefore the lowest agreement with the 1990 measured morphology. Both VR93 and VR04 formulas resulted in marginal exporting systems and more or less similar morphologies. In fact, only the VR04 prediction indicates a fair agreement with the 1990 data. Temporal evolution under the VR04 shows concentrated velocity patterns at the bay entrance and in the eastward bay channel resulting in the development of this channel and sedimentation in the southern part of the bay as found in the data.
Highlights Wave schematisation for a morphological model Different sediment transport formulas Initial distributed bed sediment composition Morphological acceleration factor
Modelling an anthropogenic effect of a tidal basin evolution applying tidal and wave boundary forcings: Ley Bay, East Frisian Wadden Sea
Abstract Potential physical impacts of an anthropogenic effect on a tidal basin evolution are investigated applying the Delft3D model suite under both tidal and wave boundary forcings. Study area is based on a peninsula construction of the Ley Bay in the East Frisian Wadden Sea. Model simulation spans from 1975 to 1990 in two stages of which the second stage begins with the implemented peninsula on the 1984 predicted morphology. The model bed consists of initially distributed three sediment fractions. Sensitivity of the Ley Bay evolution is analysed under three different sediment transport formulations: 1) Van Rijn, 1993 (VR93), 2) Soulsby, 1997 (SVR) and 3) Van Rijn et al., 2004 (VR04). Offshore tides and waves are transformed up to the model boundaries via a nested modelling approach and a statistically derived highly schematised wave climate is adopted in the simulations. Predicted morphologies indicate lower agreement with the measured morphology due to including very sparse data. Despite this discrepancy, they reproduce the major changes in the Ley Bay caused by the peninsula construction while each formula results in a slightly different channel/shoal pattern. Predicted evolution under the SVR shows the strongest sediment exporting system and therefore the lowest agreement with the 1990 measured morphology. Both VR93 and VR04 formulas resulted in marginal exporting systems and more or less similar morphologies. In fact, only the VR04 prediction indicates a fair agreement with the 1990 data. Temporal evolution under the VR04 shows concentrated velocity patterns at the bay entrance and in the eastward bay channel resulting in the development of this channel and sedimentation in the southern part of the bay as found in the data.
Highlights Wave schematisation for a morphological model Different sediment transport formulas Initial distributed bed sediment composition Morphological acceleration factor
Modelling an anthropogenic effect of a tidal basin evolution applying tidal and wave boundary forcings: Ley Bay, East Frisian Wadden Sea
Dissanayake, Pushpa (author) / Wurpts, Andreas (author)
Coastal Engineering ; 82 ; 9-24
2013-08-10
16 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2013
|