A platform for research: civil engineering, architecture and urbanism
Robust adaptive unscented Kalman filter for bearings-only tracking in three dimensional case
Abstract This paper proposes an improved version of Unscented Kalman Filter (UKF), namely Robust Adaptive UKF (RAUKF), with a special focus on Bearings-Only Target Tracking for three-dimensional case (3DBOT). The automatic tuning of the noise covariance matrices and the robust estimation of the target states form a critical point for the performance of the Kalman-type filtering algorithms, especially in the variable environmental conditions exposed in underwater. The key idea of the proposed filter is to combine robust aspects of UKF and adaption of the process and measurement noise covariance matrices with low computational complexity. The main contribution of this paper is to adjust these matrices by means of the steepest descent algorithm, and the H ∞ technique is embedded to achieve superior performance in terms of accuracy and robustness against initial conditions and model uncertainties. Different experiments are performed to evaluate the performance of the proposed algorithm in the 3DBOT problem with a single moving observer. Simulations demonstrate that the proposed filter produce more accurate results with satisfactory computational burden in comparison with other methods.
Robust adaptive unscented Kalman filter for bearings-only tracking in three dimensional case
Abstract This paper proposes an improved version of Unscented Kalman Filter (UKF), namely Robust Adaptive UKF (RAUKF), with a special focus on Bearings-Only Target Tracking for three-dimensional case (3DBOT). The automatic tuning of the noise covariance matrices and the robust estimation of the target states form a critical point for the performance of the Kalman-type filtering algorithms, especially in the variable environmental conditions exposed in underwater. The key idea of the proposed filter is to combine robust aspects of UKF and adaption of the process and measurement noise covariance matrices with low computational complexity. The main contribution of this paper is to adjust these matrices by means of the steepest descent algorithm, and the H ∞ technique is embedded to achieve superior performance in terms of accuracy and robustness against initial conditions and model uncertainties. Different experiments are performed to evaluate the performance of the proposed algorithm in the 3DBOT problem with a single moving observer. Simulations demonstrate that the proposed filter produce more accurate results with satisfactory computational burden in comparison with other methods.
Robust adaptive unscented Kalman filter for bearings-only tracking in three dimensional case
Mehrjouyan, Ali (author) / Alfi, Alireza (author)
Applied Ocean Research ; 87 ; 223-232
2019-01-30
10 pages
Article (Journal)
Electronic Resource
English
Multiple Vehicle 3D Tracking Using an Unscented Kalman Filter
British Library Conference Proceedings | 2005
|Multiple vehicle 3D tracking using an unscented Kalman
IEEE | 2005
|