A platform for research: civil engineering, architecture and urbanism
Pile responses to side-by-side twin tunnelling in stiff clay: Effects of different tunnel depths relative to pile
AbstractIn densely built areas, the development of underground transportation systems often involves twin tunnels, which are sometimes unavoidably constructed adjacent to existing piled foundations. Because soil stiffness degrades with induced stress release and shear strain during tunnelling, it is vital to investigate the pile responses to subsequent tunnels after the first tunnel in a twin-tunnel transportation system. To gain new insights into single pile responses to side-by-side twin tunnelling in saturated stiff clay, a three-dimensional coupled-consolidation numerical parametric study is carried out. An advanced hypoplasticity (clay) constitutive model with small-strain stiffness is adopted. The effects of each tunnel depth relative to pile are investigated by simulating the twin tunnels either near the mid-depth of the pile shaft or adjacent to or below the pile toe. The model parameters are calibrated against centrifuge test results in stiff clay reported in literature. It is found the second tunnelling in each case resulted in larger settlement than that due to the first tunnelling with a maximum percentage difference of 175% in the case of twin tunnelling near the mid-depth of the shaft. This is because of the degradation of clay stiffness around the pile during the first tunnelling. Conversely, the first tunnelling-induced bending moment was reduced substantially during the second tunnelling. The most critical location of twin tunnels relative to the pile was found to be the tunnels below the pile toe. This is because the entire pile was located within the major influence zone of the twin tunnelling. Two distinct load transfer mechanisms can be identified in the pile, namely downward load transfer in case of tunnels near mid-depth of the pile shaft and next to the pile toe and upward load transfer in case of twin-tunnelling below the pile toe. These two transfer mechanisms can be useful for practitioner to assess the pile performance due to twin tunnelling.
Pile responses to side-by-side twin tunnelling in stiff clay: Effects of different tunnel depths relative to pile
AbstractIn densely built areas, the development of underground transportation systems often involves twin tunnels, which are sometimes unavoidably constructed adjacent to existing piled foundations. Because soil stiffness degrades with induced stress release and shear strain during tunnelling, it is vital to investigate the pile responses to subsequent tunnels after the first tunnel in a twin-tunnel transportation system. To gain new insights into single pile responses to side-by-side twin tunnelling in saturated stiff clay, a three-dimensional coupled-consolidation numerical parametric study is carried out. An advanced hypoplasticity (clay) constitutive model with small-strain stiffness is adopted. The effects of each tunnel depth relative to pile are investigated by simulating the twin tunnels either near the mid-depth of the pile shaft or adjacent to or below the pile toe. The model parameters are calibrated against centrifuge test results in stiff clay reported in literature. It is found the second tunnelling in each case resulted in larger settlement than that due to the first tunnelling with a maximum percentage difference of 175% in the case of twin tunnelling near the mid-depth of the shaft. This is because of the degradation of clay stiffness around the pile during the first tunnelling. Conversely, the first tunnelling-induced bending moment was reduced substantially during the second tunnelling. The most critical location of twin tunnels relative to the pile was found to be the tunnels below the pile toe. This is because the entire pile was located within the major influence zone of the twin tunnelling. Two distinct load transfer mechanisms can be identified in the pile, namely downward load transfer in case of tunnels near mid-depth of the pile shaft and next to the pile toe and upward load transfer in case of twin-tunnelling below the pile toe. These two transfer mechanisms can be useful for practitioner to assess the pile performance due to twin tunnelling.
Pile responses to side-by-side twin tunnelling in stiff clay: Effects of different tunnel depths relative to pile
Soomro, M.A. (author) / Ng, C.W.W. (author) / Liu, K. (author) / Memon, N.A. (author)
Computers and Geotechnics ; 84 ; 101-116
2016-11-18
16 pages
Article (Journal)
Electronic Resource
English
Parametric Study of Pile Response to Side-by-Side Twin Tunneling in Stiff Clay
BASE | 2020
|Three-dimensional centrifuge modelling of pile group responses to side-by-side twin tunnelling
Online Contents | 2014
|