A platform for research: civil engineering, architecture and urbanism
An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling
AbstractAn analytical model is proposed to predict the axial force of grouted rock bolt in the tunnelling design. The interaction mechanism of the rock bolt and the soft rock mass has been described according to their consistent displacement. Coupling and decoupling behaviors of the rock bolt around a circular tunnel have been analyzed. According to case studies, the theoretical prediction of the axial force agrees well with the in situ measured results. The installing time and the length of the rock bolt, and the deformation modulus of the rock mass are taken as study parameters to analyze the supporting behavior of the rock bolt. According to the results of the theoretical analysis, there are some conclusions as followings: (1) a lower axial force is resulted because of the delay of installing rock bolt and its supporting effect may be reduced; (2) the larger displacement is caused by the lower deformation modulus of the rock mass, and a higher axial force is resulted in the rock bolt. If the shear strength of the rock mass is not enough, the decoupling behavior will take place interior the rock mass, and the performance of rock bolt may be reduced; (3) the position of a neutral point is related with the radius of tunnel, the physical properties of the rock bolt and the rock mass. It is found that the position of the neutral point and the maximum axial force of the rock bolt installed in the soft rock may tend to be constant when its length is long enough, which means that the supporting effect of the rock bolt can not be improved significantly only by increasing the length of the rock bolt. By using this model, a way is supplied to analyze the supporting behavior of the rock bolt, and a method is provided for the quantitative evaluation of its supporting effect in NATM tunnelling.
An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling
AbstractAn analytical model is proposed to predict the axial force of grouted rock bolt in the tunnelling design. The interaction mechanism of the rock bolt and the soft rock mass has been described according to their consistent displacement. Coupling and decoupling behaviors of the rock bolt around a circular tunnel have been analyzed. According to case studies, the theoretical prediction of the axial force agrees well with the in situ measured results. The installing time and the length of the rock bolt, and the deformation modulus of the rock mass are taken as study parameters to analyze the supporting behavior of the rock bolt. According to the results of the theoretical analysis, there are some conclusions as followings: (1) a lower axial force is resulted because of the delay of installing rock bolt and its supporting effect may be reduced; (2) the larger displacement is caused by the lower deformation modulus of the rock mass, and a higher axial force is resulted in the rock bolt. If the shear strength of the rock mass is not enough, the decoupling behavior will take place interior the rock mass, and the performance of rock bolt may be reduced; (3) the position of a neutral point is related with the radius of tunnel, the physical properties of the rock bolt and the rock mass. It is found that the position of the neutral point and the maximum axial force of the rock bolt installed in the soft rock may tend to be constant when its length is long enough, which means that the supporting effect of the rock bolt can not be improved significantly only by increasing the length of the rock bolt. By using this model, a way is supplied to analyze the supporting behavior of the rock bolt, and a method is provided for the quantitative evaluation of its supporting effect in NATM tunnelling.
An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling
Cai, Yue (author) / Esaki, Tetsuro (author) / Jiang, Yujing (author)
Tunnelling and Underground Space Technology ; 19 ; 607-618
2004-02-15
12 pages
Article (Journal)
Electronic Resource
English
An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling
Online Contents | 2004
|An analytical model to predict axial load in grouted rock bolt for soft rock tunnelling
British Library Online Contents | 2004
|Composite Element Model of the Fully Grouted Rock Bolt
Online Contents | 2003
|Composite Element Model of the Fully Grouted Rock Bolt
Online Contents | 2003
|Composite Element Model of the Fully Grouted Rock Bolt
Springer Verlag | 2003
|