A platform for research: civil engineering, architecture and urbanism
Investigation on life-cycle damage cost of wind-excited tall buildings considering directionality effects
AbstractLife-cycle cost analysis (LCCA) can be efficiently used to quantify wind-induced damage on a tall building. The LCCA selects an “optimal” design solution by minimizing over structural lifetime the total cost (construction, maintenance and repair). Being based on the Pacific Earthquake Engineering Research equation, the LCCA relates the expected cost over the lifetime of the structure to the probability of exceeding specific damage levels. It also accounts for potential sources of uncertainty, such as variability in wind load intensity, directionality, structural properties, damage model estimation, etc. This paper proposes a LCCA methodology that evolves from the approach used in seismic engineering to numerically examine non-structural damage probability and predict maintenance costs on tall buildings by incorporating information on aerodynamic loads measured on a reduced-scale model in wind tunnel. The final objective is to provide an efficient simulation procedure, which simultaneously accounts for stochastic characterization of wind load intensity and direction.
HighlightsA loss estimation model for wind-excited tall buildings is proposed.The procedure accounts for uncertainty in wind load intensity and direction.The life-cycle cost is computed as a function of the building's orientation.Fragility information and damage model significantly affect the results.Best building's orientation strictly depends on wind characteristics of the site.
Investigation on life-cycle damage cost of wind-excited tall buildings considering directionality effects
AbstractLife-cycle cost analysis (LCCA) can be efficiently used to quantify wind-induced damage on a tall building. The LCCA selects an “optimal” design solution by minimizing over structural lifetime the total cost (construction, maintenance and repair). Being based on the Pacific Earthquake Engineering Research equation, the LCCA relates the expected cost over the lifetime of the structure to the probability of exceeding specific damage levels. It also accounts for potential sources of uncertainty, such as variability in wind load intensity, directionality, structural properties, damage model estimation, etc. This paper proposes a LCCA methodology that evolves from the approach used in seismic engineering to numerically examine non-structural damage probability and predict maintenance costs on tall buildings by incorporating information on aerodynamic loads measured on a reduced-scale model in wind tunnel. The final objective is to provide an efficient simulation procedure, which simultaneously accounts for stochastic characterization of wind load intensity and direction.
HighlightsA loss estimation model for wind-excited tall buildings is proposed.The procedure accounts for uncertainty in wind load intensity and direction.The life-cycle cost is computed as a function of the building's orientation.Fragility information and damage model significantly affect the results.Best building's orientation strictly depends on wind characteristics of the site.
Investigation on life-cycle damage cost of wind-excited tall buildings considering directionality effects
Ierimonti, Laura (author) / Caracoglia, Luca (author) / Venanzi, Ilaria (author) / Materazzi, Annibale Luigi (author)
Journal of Wind Engineering and Industrial Aerodynamics ; 171 ; 207-218
2017-09-29
12 pages
Article (Journal)
Electronic Resource
English