A platform for research: civil engineering, architecture and urbanism
Insights on chemical and physical chloride binding in blended cement pastes
Abstract This study investigates chloride binding in blended cement pastes exposed to 0.5 M NaCl solutions (with and without pH adjustment) using X-ray diffraction and energy-dispersive X-ray spectroscopy image analysis (edxia). The aim is to better understand the effects of the binder type, the water-to-binder ratio and the pH on the chemical binding in AFm phases and the physical binding on C-A-S-H. Results show that the binding cannot be predicted from AFm and C-A-S-H contents alone because competing ions in the system affect both the Friedel's salt solid solution chemistry and the C-A-S-H binding capacity. Notably, the high content of aluminous hydrates in LC3 systems leads to a high chemical binding even if Friedel's salt solid solutions have relatively low chloride contents (particularly at a higher pH). On the contrary, the CEMIII/A paste showed low binding because of relatively high sulfate and magnesium contents which compete for incorporation/adsorption in aluminous hydrates (AFm, ettringite and hydrotalcite).
Insights on chemical and physical chloride binding in blended cement pastes
Abstract This study investigates chloride binding in blended cement pastes exposed to 0.5 M NaCl solutions (with and without pH adjustment) using X-ray diffraction and energy-dispersive X-ray spectroscopy image analysis (edxia). The aim is to better understand the effects of the binder type, the water-to-binder ratio and the pH on the chemical binding in AFm phases and the physical binding on C-A-S-H. Results show that the binding cannot be predicted from AFm and C-A-S-H contents alone because competing ions in the system affect both the Friedel's salt solid solution chemistry and the C-A-S-H binding capacity. Notably, the high content of aluminous hydrates in LC3 systems leads to a high chemical binding even if Friedel's salt solid solutions have relatively low chloride contents (particularly at a higher pH). On the contrary, the CEMIII/A paste showed low binding because of relatively high sulfate and magnesium contents which compete for incorporation/adsorption in aluminous hydrates (AFm, ettringite and hydrotalcite).
Insights on chemical and physical chloride binding in blended cement pastes
Wilson, William (author) / Gonthier, Julien Nicolas (author) / Georget, Fabien (author) / Scrivener, Karen L. (author)
2022-02-16
Article (Journal)
Electronic Resource
English
Chemical Properties of Blended Cement Pastes
Online Contents | 2011
|Chemical Properties of Blended Cement Pastes
British Library Online Contents | 2011
|Chloride Ingress With and Without Carbonation in Blended Cement Pastes
British Library Conference Proceedings | 2001
|