A platform for research: civil engineering, architecture and urbanism
Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression
Abstract Particle flow code (PFC2D) was adopted to carry out a discrete element modeling (DEM) for the fracture coalescence behavior of red sandstone specimens containing two unparallel fissures under uniaxial compression. The numerical micro-parameters of red sandstone were firstly validated from the experimental results of intact specimen, and were then checked with the experimental results for red sandstone containing two unparallel fissures under uniaxial compression. Four key factors (i.e. the axial stress–axial strain curve, the peak strength and elastic modulus, the ultimate failure mode and the crack coalescence process) were put forward to discriminate the rightness and reasonability of numerical simulated results. A systematic simulation for red sandstone specimens was performed to compare quantitatively the numerical results with the experimental results, which showed that the numerical simulated results were in good agreement with the experimental results. Numerical simulated results showed that the peak strength and elastic modulus of red sandstone containing two unparallel fissures were increased at the fissure angle α 2 =90°, before decreasing up to our maximum fissure angle of 180°. However, the ratio of lateral stiffness of red sandstone containing two unparallel fissures firstly decreased and then increased with the increase of α 2, and had a lowest value at α 2 =90°. The shear and tensile crack numbers of red sandstone reaching the peak strength with respect to α 2 were also discussed. Through the numerical simulation, we made a detailed summarization for the crack initiation, propagation and coalescence in the entire deformation process of red sandstone, which was found to be dependent to α 2. The simulated cracks replicated most of the phenomena observed during the experiment. Finally, the stress field in the red sandstone specimens containing two unparallel fissures was obtained, which revealed the fracture coalescence mechanism of flawed red sandstone under uniaxial compression.
Highlights The micro-parameters from the experimental results of intact specimen were validated. The simulated results were compared quantitatively with the experimental results. The crack initiation, propagation and coalescence behavior were summarized. The fracture coalescence mechanism of fissured red sandstone was revealed.
Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression
Abstract Particle flow code (PFC2D) was adopted to carry out a discrete element modeling (DEM) for the fracture coalescence behavior of red sandstone specimens containing two unparallel fissures under uniaxial compression. The numerical micro-parameters of red sandstone were firstly validated from the experimental results of intact specimen, and were then checked with the experimental results for red sandstone containing two unparallel fissures under uniaxial compression. Four key factors (i.e. the axial stress–axial strain curve, the peak strength and elastic modulus, the ultimate failure mode and the crack coalescence process) were put forward to discriminate the rightness and reasonability of numerical simulated results. A systematic simulation for red sandstone specimens was performed to compare quantitatively the numerical results with the experimental results, which showed that the numerical simulated results were in good agreement with the experimental results. Numerical simulated results showed that the peak strength and elastic modulus of red sandstone containing two unparallel fissures were increased at the fissure angle α 2 =90°, before decreasing up to our maximum fissure angle of 180°. However, the ratio of lateral stiffness of red sandstone containing two unparallel fissures firstly decreased and then increased with the increase of α 2, and had a lowest value at α 2 =90°. The shear and tensile crack numbers of red sandstone reaching the peak strength with respect to α 2 were also discussed. Through the numerical simulation, we made a detailed summarization for the crack initiation, propagation and coalescence in the entire deformation process of red sandstone, which was found to be dependent to α 2. The simulated cracks replicated most of the phenomena observed during the experiment. Finally, the stress field in the red sandstone specimens containing two unparallel fissures was obtained, which revealed the fracture coalescence mechanism of flawed red sandstone under uniaxial compression.
Highlights The micro-parameters from the experimental results of intact specimen were validated. The simulated results were compared quantitatively with the experimental results. The crack initiation, propagation and coalescence behavior were summarized. The fracture coalescence mechanism of fissured red sandstone was revealed.
Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression
Yang, Sheng-Qi (author) / Huang, Yan-Hua (author) / Jing, Hong-Wen (author) / Liu, Xiang-Ru (author)
Engineering Geology ; 178 ; 28-48
2014-06-08
21 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2014
|Mechanical behaviours of sandstone containing intersecting fissures under uniaxial compression
DOAJ | 2022
|Taylor & Francis Verlag | 2020
|