A platform for research: civil engineering, architecture and urbanism
Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures
Abstract This study investigated the thermal resistance of lightweight concrete with recycled coal bottom ash and fly ash. Specimens were exposed to temperatures up to 800 °C then cooled to room temperature before conducting experiments. Compressive strength test, FF-RC test, TG analysis, and XRD analysis were performed to analyze the physicochemical effects of coal ashes on the thermal resistance of concrete. Test results indicated that both bottom ash and fly ash were associated with a substantial increase in the residual strength of thermal exposed concretes. The results were attributed to the surface interlocking effect and the smaller amount of SiO2 for bottom ash. For fly ash, the formation of pozzolanic C-S-H gel and tobermorite retained water at high temperatures, and the consumption of Ca(OH)2 lowered stress from rapid recrystallization after exposure to 600 °C. It was concluded that the incorporation of coal ashes allows for lightweight concrete with good thermal resistance.
Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures
Abstract This study investigated the thermal resistance of lightweight concrete with recycled coal bottom ash and fly ash. Specimens were exposed to temperatures up to 800 °C then cooled to room temperature before conducting experiments. Compressive strength test, FF-RC test, TG analysis, and XRD analysis were performed to analyze the physicochemical effects of coal ashes on the thermal resistance of concrete. Test results indicated that both bottom ash and fly ash were associated with a substantial increase in the residual strength of thermal exposed concretes. The results were attributed to the surface interlocking effect and the smaller amount of SiO2 for bottom ash. For fly ash, the formation of pozzolanic C-S-H gel and tobermorite retained water at high temperatures, and the consumption of Ca(OH)2 lowered stress from rapid recrystallization after exposure to 600 °C. It was concluded that the incorporation of coal ashes allows for lightweight concrete with good thermal resistance.
Mechanical properties of lightweight concrete made with coal ashes after exposure to elevated temperatures
Ahn, Y.B. (author) / Jang, J.G. (author) / Lee, H.K. (author)
Cement and Concrete Composites ; 72 ; 27-38
2016-05-31
12 pages
Article (Journal)
Electronic Resource
English