A platform for research: civil engineering, architecture and urbanism
Shock wave attenuation by geotextile encapsulated sand barrier systems
AbstractThis paper presents a laboratory scale experimental technique to study the performance of the encapsulated sand barrier systems in mitigating shock waves. The geotextile encapsulated sand barrier systems are made of cubical wire mesh formwork lined with geotextile and form a thick protective barrier when filled with granular materials. In the present study, dry sand particles of size varying from microns to few millimeters (fine and coarse) are used as infill granular material. Spherical shaped glass beads are also used as the infill material to study the influence of shape of the infill particle on the attenuation behavior. The process of shock wave attenuation by the sand barrier, with and without the geotextile facing formwork is examined. The experiments are performed using a conventional shock tube, where shock waves with incident Mach number in the range of 1.29–1.70 are generated. The experimental results show that the presence of geotextile layer has contributed significantly towards shock wave attenuation. The geotextile also plays an important role as a regulator, which is able to deliver gradual pressure rise at the downstream end of the barrier.
Shock wave attenuation by geotextile encapsulated sand barrier systems
AbstractThis paper presents a laboratory scale experimental technique to study the performance of the encapsulated sand barrier systems in mitigating shock waves. The geotextile encapsulated sand barrier systems are made of cubical wire mesh formwork lined with geotextile and form a thick protective barrier when filled with granular materials. In the present study, dry sand particles of size varying from microns to few millimeters (fine and coarse) are used as infill granular material. Spherical shaped glass beads are also used as the infill material to study the influence of shape of the infill particle on the attenuation behavior. The process of shock wave attenuation by the sand barrier, with and without the geotextile facing formwork is examined. The experiments are performed using a conventional shock tube, where shock waves with incident Mach number in the range of 1.29–1.70 are generated. The experimental results show that the presence of geotextile layer has contributed significantly towards shock wave attenuation. The geotextile also plays an important role as a regulator, which is able to deliver gradual pressure rise at the downstream end of the barrier.
Shock wave attenuation by geotextile encapsulated sand barrier systems
Vivek, Padmanabha (author) / Sitharam, Thallak G. (author)
Geotextiles and Geomembranes ; 45 ; 149-160
2017-01-03
12 pages
Article (Journal)
Electronic Resource
English
Sand Dunes on Louisiana Barrier Island Bolstered by Reinforced Geotextile Tubes
Online Contents | 2010
Triaxial behaviour of geotextile reinforced sand
Taylor & Francis Verlag | 2022
|