A platform for research: civil engineering, architecture and urbanism
Spatio-temporal variability of satellite-derived aerosol optical thickness over Northeast Asia in 2004
AbstractIn this study a modified Bremen aerosol retrieval (BAER) method was used to retrieve aerosol optical thickness (AOT) over both land and ocean using moderate resolution imaging spectro-radiometer (MODIS) data over Northeast Asia for a full year during 2004. Retrieved MODIS AOT data were in good agreement with data obtained from a ground-based AERONET sunphotometer (r=0.90, linear slope=0.89). Seasonal variation analysis of AOT revealed maximum values in summer (∼0.41) and minimum values in winter (∼0.25). The contribution of each aerosol type to total AOT was estimated for each pixel. A spectral shape fitting procedure was used to select the optimum aerosol model for AOT retrieval among six aerosol types: urban, rural, maritime, tropospheric, Asian dust, and biomass burning. The spatio-temporal distribution of average AOT was analyzed for the following five sectors in Northeast Asia: (I) East China, (II) Yellow Sea, (III) Korea, (IV) East Sea, and (V) South Sea plus a part of Japan. Maximum AOT values of 0.75±0.18 were measured over sector (I) in summer, while minimum values of 0.10±0.02 were recorded over sector (IV) in winter. AOT estimates over sector (I) were much higher than those of other sectors due to an increased contribution to the total AOT by fine urban aerosol, which contributed up to 56.5% of the total AOT.
Spatio-temporal variability of satellite-derived aerosol optical thickness over Northeast Asia in 2004
AbstractIn this study a modified Bremen aerosol retrieval (BAER) method was used to retrieve aerosol optical thickness (AOT) over both land and ocean using moderate resolution imaging spectro-radiometer (MODIS) data over Northeast Asia for a full year during 2004. Retrieved MODIS AOT data were in good agreement with data obtained from a ground-based AERONET sunphotometer (r=0.90, linear slope=0.89). Seasonal variation analysis of AOT revealed maximum values in summer (∼0.41) and minimum values in winter (∼0.25). The contribution of each aerosol type to total AOT was estimated for each pixel. A spectral shape fitting procedure was used to select the optimum aerosol model for AOT retrieval among six aerosol types: urban, rural, maritime, tropospheric, Asian dust, and biomass burning. The spatio-temporal distribution of average AOT was analyzed for the following five sectors in Northeast Asia: (I) East China, (II) Yellow Sea, (III) Korea, (IV) East Sea, and (V) South Sea plus a part of Japan. Maximum AOT values of 0.75±0.18 were measured over sector (I) in summer, while minimum values of 0.10±0.02 were recorded over sector (IV) in winter. AOT estimates over sector (I) were much higher than those of other sectors due to an increased contribution to the total AOT by fine urban aerosol, which contributed up to 56.5% of the total AOT.
Spatio-temporal variability of satellite-derived aerosol optical thickness over Northeast Asia in 2004
Lee, Kwon Ho (author) / Kim, Young Joon (author) / von Hoyningen-Huene, Wolfgang (author) / Burrow, John P. (author)
Atmospheric Environment ; 41 ; 3959-3973
2007-01-22
15 pages
Article (Journal)
Electronic Resource
English
BAER , MODIS , Sunphotometer , AOT , Aerosol type