A platform for research: civil engineering, architecture and urbanism
Autogenous formation and smart behaviors of nitrite- and nitrate-intercalated layered double hydroxides (LDHs) in Portland cement-metakaolin-dolomite blends
Abstract In this work, the influence of sodium nitrite (NaNO2) and sodium nitrate (NaNO3) corrosion inhibitors on the composition, structure, and chloride binding behaviors of layered double hydroxides (LDHs) formed in ternary ordinary Portland cement-metakaolin-dolomite (OPC-MK-DM) systems is studied. The results show that the nitrite and nitrate anions are preferably intercalated in the CaAl LDHs (AFm phases), but not in the MgAl LDHs (hydrotalcite-type phases) due to its limited formation in these ternary cementitious systems cured at ambient temperature. The autogenously formed nitrate- and nitrite-AFm phases are decomposed upon chloride exposure accompanied by Friedel's salts formation, potentially releasing corrosion inhibitive ions to the pore solution in a progressive manner. The NaNO2 and NaNO3 incorporation in ternary OPC-MK-DM binders marginally lowers chloride binding capacity but reduces its penetration resistance mainly due to pore coarsening. Nevertheless, a strong linear correlation can be established between the water-soluble and total chloride contents in ternary OPC-MK-DM systems, regardless of OPC replacement level and corrosion inhibitor incorporation.
Autogenous formation and smart behaviors of nitrite- and nitrate-intercalated layered double hydroxides (LDHs) in Portland cement-metakaolin-dolomite blends
Abstract In this work, the influence of sodium nitrite (NaNO2) and sodium nitrate (NaNO3) corrosion inhibitors on the composition, structure, and chloride binding behaviors of layered double hydroxides (LDHs) formed in ternary ordinary Portland cement-metakaolin-dolomite (OPC-MK-DM) systems is studied. The results show that the nitrite and nitrate anions are preferably intercalated in the CaAl LDHs (AFm phases), but not in the MgAl LDHs (hydrotalcite-type phases) due to its limited formation in these ternary cementitious systems cured at ambient temperature. The autogenously formed nitrate- and nitrite-AFm phases are decomposed upon chloride exposure accompanied by Friedel's salts formation, potentially releasing corrosion inhibitive ions to the pore solution in a progressive manner. The NaNO2 and NaNO3 incorporation in ternary OPC-MK-DM binders marginally lowers chloride binding capacity but reduces its penetration resistance mainly due to pore coarsening. Nevertheless, a strong linear correlation can be established between the water-soluble and total chloride contents in ternary OPC-MK-DM systems, regardless of OPC replacement level and corrosion inhibitor incorporation.
Autogenous formation and smart behaviors of nitrite- and nitrate-intercalated layered double hydroxides (LDHs) in Portland cement-metakaolin-dolomite blends
Ye, Hailong (author)
2020-10-12
Article (Journal)
Electronic Resource
English
Organic chemical conversions catalyzed by intercalated layered double hydroxides (LDHs)
Online Contents | 1995
|Chloride absorption by nitrate, nitrite and aminobenzoate intercalated layered double hydroxides
British Library Online Contents | 2017
|Synthesis and characterization of layered double hydroxides (LDHs) with intercalated chromate ions
British Library Online Contents | 2007
|Chemical shrinkage and autogenous shrinkage of Portland cement metakaolin pastes
Online Contents | 1998
|British Library Online Contents | 2018
|