A platform for research: civil engineering, architecture and urbanism
Stability analysis of slopes in soils with strain-softening behaviour
AbstractThis paper presents a numerical approach to analyse the stability of slopes in soils with strain-softening behaviour. In these materials, a progressive failure can occur owing to a reduction of strength with increasing strain. Such a phenomenon can be analysed using methods that are able to simulate the formation and development of the shear zones in which strain localises. From a computational point of view, this presents many difficulties because the numerical procedures currently used are often affected by a lack of convergence, and the solution may depend strongly on the mesh adopted. In order to overcome these numerical drawbacks, in the present study use is made of a non-local elasto-viscoplastic constitutive model within the framework of the finite element method. The Mohr–Coulomb yield function is adopted, and the strain-softening behaviour of the soil is simulated by reducing the strength parameters with the increasing deviatoric plastic strain. To assess the reliability of the proposed approach, some comparisons with the results obtained using other constitutive models for soils with strain-softening behaviour are presented. Finally, a slope subjected to a prescribed process of weathering is considered, and the effects of this process on the slope stability are discussed.
Stability analysis of slopes in soils with strain-softening behaviour
AbstractThis paper presents a numerical approach to analyse the stability of slopes in soils with strain-softening behaviour. In these materials, a progressive failure can occur owing to a reduction of strength with increasing strain. Such a phenomenon can be analysed using methods that are able to simulate the formation and development of the shear zones in which strain localises. From a computational point of view, this presents many difficulties because the numerical procedures currently used are often affected by a lack of convergence, and the solution may depend strongly on the mesh adopted. In order to overcome these numerical drawbacks, in the present study use is made of a non-local elasto-viscoplastic constitutive model within the framework of the finite element method. The Mohr–Coulomb yield function is adopted, and the strain-softening behaviour of the soil is simulated by reducing the strength parameters with the increasing deviatoric plastic strain. To assess the reliability of the proposed approach, some comparisons with the results obtained using other constitutive models for soils with strain-softening behaviour are presented. Finally, a slope subjected to a prescribed process of weathering is considered, and the effects of this process on the slope stability are discussed.
Stability analysis of slopes in soils with strain-softening behaviour
Conte, E. (author) / Silvestri, F. (author) / Troncone, A. (author)
Computers and Geotechnics ; 37 ; 710-722
2010-04-26
13 pages
Article (Journal)
Electronic Resource
English
Stability analysis of slopes in soils with strain-softening behaviour
Online Contents | 2010
|Numerical analysis of a landslide in soils with strain-softening behaviour
Online Contents | 2005
|Numerical modeling of slopes in strain-softening rock
British Library Conference Proceedings | 1997
|