A platform for research: civil engineering, architecture and urbanism
Buildings’ internal heat gains prediction using artificial intelligence methods
Abstract A large part of energy consumption in homes, offices and commercial spaces is related to Heating, Ventilation and Air-conditioning (HVAC) devices. The effective parameter on the consumption of HVAC systems is internal heat gains that arise from occupants, electric equipment and lighting. In order to reduce the energy consumption of these systems, internal heat gains should be predicted accurately. Since there are few investigations performed on the prediction of internal heat gains, in this paper, three predictive models, namely multiple regression model, Levenberg–Marquardt back-propagation (LM-BP) model and similar days method based on combined weights, have been deployed. By assessing the influential factors on internal heat gains, fundamental theories, structures, equations and parameters of these models are thoroughly proposed. To examine the prediction techniques, an office building in China was considered. It was found that all the proposed models have high accuracy; however, the LM-BP neural network showed the most precision among other models with RMSE = 15.59, MAE = 10.16 and MAPE = 6.35. This model had a higher agreement with the actual internal heat gains compared to the predetermined working programs in the ASHRAE standard 90.1. The proposed models used in this study can lead to providing a theoretical base for scholars and engineers to improve the predictive control of HVAC systems, which plays an important role in enhancing thermal comfort, saving energy of residential buildings.
Buildings’ internal heat gains prediction using artificial intelligence methods
Abstract A large part of energy consumption in homes, offices and commercial spaces is related to Heating, Ventilation and Air-conditioning (HVAC) devices. The effective parameter on the consumption of HVAC systems is internal heat gains that arise from occupants, electric equipment and lighting. In order to reduce the energy consumption of these systems, internal heat gains should be predicted accurately. Since there are few investigations performed on the prediction of internal heat gains, in this paper, three predictive models, namely multiple regression model, Levenberg–Marquardt back-propagation (LM-BP) model and similar days method based on combined weights, have been deployed. By assessing the influential factors on internal heat gains, fundamental theories, structures, equations and parameters of these models are thoroughly proposed. To examine the prediction techniques, an office building in China was considered. It was found that all the proposed models have high accuracy; however, the LM-BP neural network showed the most precision among other models with RMSE = 15.59, MAE = 10.16 and MAPE = 6.35. This model had a higher agreement with the actual internal heat gains compared to the predetermined working programs in the ASHRAE standard 90.1. The proposed models used in this study can lead to providing a theoretical base for scholars and engineers to improve the predictive control of HVAC systems, which plays an important role in enhancing thermal comfort, saving energy of residential buildings.
Buildings’ internal heat gains prediction using artificial intelligence methods
Liang, Rui (author) / Ding, Wangfei (author) / Zandi, Yousef (author) / Rahimi, Abouzar (author) / Pourkhorshidi, Sara (author) / Khadimallah, Mohamed Amine (author)
Energy and Buildings ; 258
2021-12-16
Article (Journal)
Electronic Resource
English
The role of the internal heat gains for artificial lighting on the energy performance of buildings
BASE | 2021
|The role of the internal heat gains for artificial lighting on the energy performance of buildings
BASE | 2021
|Are internal heat gains underestimated in thermal performance evaluation of buildings?
BASE | 2014
|Electronic Equipment Heat Gains in Buildings
British Library Online Contents | 1998
|Electronic Equipment Heat Gains in Buildings
British Library Conference Proceedings | 1998
|