A platform for research: civil engineering, architecture and urbanism
Continuous health monitoring of pavement systems using smart sensing technology
Highlights A self-powered sensing approach is proposed for health monitoring of pavement systems. Damage detection performance is evaluated with numerical and experimental studies. A new miniaturized spherical packaging system is designed for the protection of embedded sensing system. Damage localization and quantification is investigated.
Abstract Recently, significant attention has been devoted to the utilization of new sensing technologies for pavement maintenance and preservation systems. This study presents a new approach for the continuous health monitoring of asphalt concrete pavements based on piezoelectric self-powered sensing technology. The beauty of this technology is that the signal sensed by the piezoelectric transducers from traffic loading can be used both for empowering the self-powered sensors and damage diagnosis. Numerical and experimental studies were carried out to evaluate the damage detection performance of the proposed self-sustained sensing system. A three-dimensional finite element analysis was performed to obtain the pavement responses under moving tire loading. Damage was introduced as bottom-up fatigue cracks at the bottom of the asphalt layer. Thereafter, features extracted from the dynamic strain data for a number of sensing nodes were used to detect the damage progression. The laboratory tests were carried out on an asphalt concrete specimen in three point bending mode. For the protection of the embedded sensors, a new miniaturized spherical packaging system was designed and tested. Based on the results of the numerical study, the sensing nodes located along the loading path are capable of detecting the damage progression. Besides, the experimental study indicates that the proposed method is efficient in detecting different damage states including crack propagation. Finally, the possibility of localizing the damage and quantifying its severity was investigated and discussed.
Continuous health monitoring of pavement systems using smart sensing technology
Highlights A self-powered sensing approach is proposed for health monitoring of pavement systems. Damage detection performance is evaluated with numerical and experimental studies. A new miniaturized spherical packaging system is designed for the protection of embedded sensing system. Damage localization and quantification is investigated.
Abstract Recently, significant attention has been devoted to the utilization of new sensing technologies for pavement maintenance and preservation systems. This study presents a new approach for the continuous health monitoring of asphalt concrete pavements based on piezoelectric self-powered sensing technology. The beauty of this technology is that the signal sensed by the piezoelectric transducers from traffic loading can be used both for empowering the self-powered sensors and damage diagnosis. Numerical and experimental studies were carried out to evaluate the damage detection performance of the proposed self-sustained sensing system. A three-dimensional finite element analysis was performed to obtain the pavement responses under moving tire loading. Damage was introduced as bottom-up fatigue cracks at the bottom of the asphalt layer. Thereafter, features extracted from the dynamic strain data for a number of sensing nodes were used to detect the damage progression. The laboratory tests were carried out on an asphalt concrete specimen in three point bending mode. For the protection of the embedded sensors, a new miniaturized spherical packaging system was designed and tested. Based on the results of the numerical study, the sensing nodes located along the loading path are capable of detecting the damage progression. Besides, the experimental study indicates that the proposed method is efficient in detecting different damage states including crack propagation. Finally, the possibility of localizing the damage and quantifying its severity was investigated and discussed.
Continuous health monitoring of pavement systems using smart sensing technology
Alavi, Amir H. (author) / Hasni, Hassene (author) / Lajnef, Nizar (author) / Chatti, Karim (author)
Construction and Building Materials ; 114 ; 719-736
2016-03-23
18 pages
Article (Journal)
Electronic Resource
English
Continuous health monitoring of pavement systems using smart sensing technology
Online Contents | 2016
|Continuous health monitoring of pavement systems using smart sensing technology
British Library Online Contents | 2016
|Continuous health monitoring of pavement systems using smart sensing technology
British Library Online Contents | 2016
|European Patent Office | 2015
|