A platform for research: civil engineering, architecture and urbanism
A semi-analytical model for local post-buckling analysis of stringer- and frame-stiffened cylindrical panels
AbstractA fast semi-analytical model for the post-buckling analysis of stiffened cylindrical panels is presented. The panel is comprised of a skin (shell) and stiffeners in both longitudinal (stringers) and circumferential direction (frames). Local buckling modes are considered where the skin may buckle within a bay and may induce rotation of the stiffeners. Stringers and frames are considered as structural elements and are thus not ‘smeared’ onto the skin. Large out-of-plane deflections and thus non-linear strain–displacement relations of skin and stiffeners are taken into account. The displacements of skin and stiffeners are approximated by trigonometric functions (Fourier series). First, a linear buckling eigenvalue analysis is carried out and some combination of buckling eigenmodes is chosen as imperfection. Then the load history is started and the Fourier coefficients are determined by minimizing the stiffened panel's energy at each load level. A curve-tracing algorithm, the Riks method, is used to solve the equations. The present model can be used to assess the post-buckling behavior of stiffened panels, for example, aircraft fuselage sections.
A semi-analytical model for local post-buckling analysis of stringer- and frame-stiffened cylindrical panels
AbstractA fast semi-analytical model for the post-buckling analysis of stiffened cylindrical panels is presented. The panel is comprised of a skin (shell) and stiffeners in both longitudinal (stringers) and circumferential direction (frames). Local buckling modes are considered where the skin may buckle within a bay and may induce rotation of the stiffeners. Stringers and frames are considered as structural elements and are thus not ‘smeared’ onto the skin. Large out-of-plane deflections and thus non-linear strain–displacement relations of skin and stiffeners are taken into account. The displacements of skin and stiffeners are approximated by trigonometric functions (Fourier series). First, a linear buckling eigenvalue analysis is carried out and some combination of buckling eigenmodes is chosen as imperfection. Then the load history is started and the Fourier coefficients are determined by minimizing the stiffened panel's energy at each load level. A curve-tracing algorithm, the Riks method, is used to solve the equations. The present model can be used to assess the post-buckling behavior of stiffened panels, for example, aircraft fuselage sections.
A semi-analytical model for local post-buckling analysis of stringer- and frame-stiffened cylindrical panels
Buermann, Philipp (author) / Rolfes, Raimund (author) / Tessmer, Jan (author) / Schagerl, Martin (author)
Thin-Walled Structures ; 44 ; 102-114
2005-08-11
13 pages
Article (Journal)
Electronic Resource
English
Postbuckling Analysis of Stringer-Stiffened Composite Laminated Cylindrical Panels
British Library Online Contents | 1995
|