A platform for research: civil engineering, architecture and urbanism
Brittle failure of laterally loaded self-tapping screw connections for cross-laminated timber structures
Highlights Brittle failure may occur for dowel-type connections in cross-laminated timber. Experimental tensile tests revealed possibility of brittle failure mechanisms. Analytical model estimations of load-bearing capacity show an unconservative trend. Several factors influencing the brittle load-bearing capacity are discussed.
Abstract The performance of structural timber connections is of utmost importance since they control the global response of the building. A ductile failure mechanism on the global scale is desirable, especially in the design of structures in seismic areas, where dissipative components in which ductile failure modes need to be ensured are considered. Therefore, the knowledge of possible brittle failure modes of connections is crucial. The paper investigates the brittle failures of laterally loaded dowel-type connections in cross-laminated timber subjected to tensile load in a lap joint configuration through experimental investigations and analytical estimations. A set of 13 different test series has been performed with fully threaded self-tapping screws of 8 mm diameter and different lengths (40 to 100 mm) in cross-laminated timber composed of 3 or 5 layers (layer thickness range from 20 to 40 mm), giving rise to the activation of different brittle failure modes at different depths. Plug shear was among the most typically observed failure modes. A previously proposed model for the brittle capacity was applied to the tested connections at the characteristic level. As shown by the performed statistical analysis, the existing model is not reliable and mainly unconservative. A very low performance is observed (CCC = 0.299), but with a good correlation (c = 0.750) for the tests in the parallel direction. Further research work is required to improve the current model predictions and to gain a better understanding of the underlying resisting mechanisms.
Brittle failure of laterally loaded self-tapping screw connections for cross-laminated timber structures
Highlights Brittle failure may occur for dowel-type connections in cross-laminated timber. Experimental tensile tests revealed possibility of brittle failure mechanisms. Analytical model estimations of load-bearing capacity show an unconservative trend. Several factors influencing the brittle load-bearing capacity are discussed.
Abstract The performance of structural timber connections is of utmost importance since they control the global response of the building. A ductile failure mechanism on the global scale is desirable, especially in the design of structures in seismic areas, where dissipative components in which ductile failure modes need to be ensured are considered. Therefore, the knowledge of possible brittle failure modes of connections is crucial. The paper investigates the brittle failures of laterally loaded dowel-type connections in cross-laminated timber subjected to tensile load in a lap joint configuration through experimental investigations and analytical estimations. A set of 13 different test series has been performed with fully threaded self-tapping screws of 8 mm diameter and different lengths (40 to 100 mm) in cross-laminated timber composed of 3 or 5 layers (layer thickness range from 20 to 40 mm), giving rise to the activation of different brittle failure modes at different depths. Plug shear was among the most typically observed failure modes. A previously proposed model for the brittle capacity was applied to the tested connections at the characteristic level. As shown by the performed statistical analysis, the existing model is not reliable and mainly unconservative. A very low performance is observed (CCC = 0.299), but with a good correlation (c = 0.750) for the tests in the parallel direction. Further research work is required to improve the current model predictions and to gain a better understanding of the underlying resisting mechanisms.
Brittle failure of laterally loaded self-tapping screw connections for cross-laminated timber structures
Azinović, Boris (author) / Cabrero, José Manuel (author) / Danielsson, Henrik (author) / Pazlar, Tomaž (author)
Engineering Structures ; 266
2022-06-13
Article (Journal)
Electronic Resource
English
Shear Connections with Self-Tapping Screws for Cross-Laminated Timber Panels
British Library Conference Proceedings | 2015
|Group effects in axially loaded self-tapping screw connections
Elsevier | 2021
|