A platform for research: civil engineering, architecture and urbanism
Scaling formulation of multiphase flow and droplet trajectories with rime ice accretion on a rotating wind turbine blade
Abstract In this paper, scaling and similitude are investigated for ice accretion on a rotating wind turbine blade. Numerical CFD icing simulations are performed using FENSAP ICE software to test the scaling methods and verify the results. A small blade section is scaled six times, and each case is tested at specific flow conditions. Scaled conditions for velocity (streamwise and rotational), droplet size, and icing time are examined. CFD solutions for the flow field (air and droplet) are obtained in terms of the velocity, droplet trajectories, pressure coefficient distributions, ice thickness, and ice shapes, by quantifying the significant parameters involved in the icing process. Recommendations for parameters to be used for rime ice scaling on a rotating blade are presented, and numerical results are reported to support those recommendations. Numerical results and test conditions are obtained at sea level in wind tunnel facilities for experimental investigation. This paper presents the formulation of non-dimensionlized governing equations for scaling of the flow field, droplet trajectories, and ice accretion on a rotating blade model. It derives a set of non-dimensional groups which govern the flow parameters for a rotating blade, including the Strouhal number, Froude number, drag coefficient of droplets and droplet based Reynolds number, droplet inertia parameter, and two other new parameters. The scaling methodology can also be utilized to determine alternative test conditions to predict rime ice conditions on a rotating blade. The study provides valuable insight to predict ice accretion on large wind turbine blade sections in the field based on scaled smaller blade sections tested in a laboratory setting.
Highlights Maintaining similitude for wind turbine icing experiments is challenging. New dimensionless groups are developed for ice accretion with blade rotation. Better scaling methods improve the efficacy of climatic wind tunnel experiments.
Scaling formulation of multiphase flow and droplet trajectories with rime ice accretion on a rotating wind turbine blade
Abstract In this paper, scaling and similitude are investigated for ice accretion on a rotating wind turbine blade. Numerical CFD icing simulations are performed using FENSAP ICE software to test the scaling methods and verify the results. A small blade section is scaled six times, and each case is tested at specific flow conditions. Scaled conditions for velocity (streamwise and rotational), droplet size, and icing time are examined. CFD solutions for the flow field (air and droplet) are obtained in terms of the velocity, droplet trajectories, pressure coefficient distributions, ice thickness, and ice shapes, by quantifying the significant parameters involved in the icing process. Recommendations for parameters to be used for rime ice scaling on a rotating blade are presented, and numerical results are reported to support those recommendations. Numerical results and test conditions are obtained at sea level in wind tunnel facilities for experimental investigation. This paper presents the formulation of non-dimensionlized governing equations for scaling of the flow field, droplet trajectories, and ice accretion on a rotating blade model. It derives a set of non-dimensional groups which govern the flow parameters for a rotating blade, including the Strouhal number, Froude number, drag coefficient of droplets and droplet based Reynolds number, droplet inertia parameter, and two other new parameters. The scaling methodology can also be utilized to determine alternative test conditions to predict rime ice conditions on a rotating blade. The study provides valuable insight to predict ice accretion on large wind turbine blade sections in the field based on scaled smaller blade sections tested in a laboratory setting.
Highlights Maintaining similitude for wind turbine icing experiments is challenging. New dimensionless groups are developed for ice accretion with blade rotation. Better scaling methods improve the efficacy of climatic wind tunnel experiments.
Scaling formulation of multiphase flow and droplet trajectories with rime ice accretion on a rotating wind turbine blade
Ibrahim, Galal M. (author) / Pope, Kevin (author) / Naterer, Greg F. (author)
2022-11-16
Article (Journal)
Electronic Resource
English
Scaled ice accretion experiments on a rotating wind turbine blade
Online Contents | 2012
|Scaled ice accretion experiments on a rotating wind turbine blade
Elsevier | 2012
|