A platform for research: civil engineering, architecture and urbanism
Seasonal variability of aerosol optical properties over Beijing
AbstractThe knowledge of aerosol properties at local and regional scale is important in understanding of the global climate change. In this study, the aerosol optical properties over Beijing have been presented from the Aerosol Robotic Network (AERONET) measurements during 2002–2007. The aerosol optical depth (AOD) showed a distinct seasonal variation with high values in spring (March–May) and summer (June–August). The magnitude of Ångström exponent (α) was found to be relatively high throughout the year and the highest values (1.27) occurred in summer and the lowest (1.0) in spring. The water vapor retrieved from AERONET was found to be highest (2.60 cm) in summer. The fine modes of aerosol volume size distributions showed the highest peak around radius 0.15 μm in spring, autumn (September–November) and winter (December–February), and radius 0.19 μm in summer. The coarse modes showed the maxima peak at radius 3.0 μm in all seasons. The asymmetry factor (g) has considered as 0.65 at 440, 675, 870 and 1020 nm over Beijing in climate and radiation models. The average values of the single scattering albedo (SSA) at the four wavelengths were taken as 0.89, 0.91, 0.87 and 0.86 in spring, summer, autumn and winter, respectively. Both real and imaginary parts of the refractive index showed low wavelength dependence. The highest averages of real (1.52) and imaginary parts (0.0165) were found in spring and winter respectively in the wavelength range of 440–1020 nm. The aerosol properties over Beijing were found to highly dependent on season, and changes in aerosol properties were mainly attributed to the presence of dust as the main component during the spring season and the dominance of anthropogenic pollutants during the winter season.
Seasonal variability of aerosol optical properties over Beijing
AbstractThe knowledge of aerosol properties at local and regional scale is important in understanding of the global climate change. In this study, the aerosol optical properties over Beijing have been presented from the Aerosol Robotic Network (AERONET) measurements during 2002–2007. The aerosol optical depth (AOD) showed a distinct seasonal variation with high values in spring (March–May) and summer (June–August). The magnitude of Ångström exponent (α) was found to be relatively high throughout the year and the highest values (1.27) occurred in summer and the lowest (1.0) in spring. The water vapor retrieved from AERONET was found to be highest (2.60 cm) in summer. The fine modes of aerosol volume size distributions showed the highest peak around radius 0.15 μm in spring, autumn (September–November) and winter (December–February), and radius 0.19 μm in summer. The coarse modes showed the maxima peak at radius 3.0 μm in all seasons. The asymmetry factor (g) has considered as 0.65 at 440, 675, 870 and 1020 nm over Beijing in climate and radiation models. The average values of the single scattering albedo (SSA) at the four wavelengths were taken as 0.89, 0.91, 0.87 and 0.86 in spring, summer, autumn and winter, respectively. Both real and imaginary parts of the refractive index showed low wavelength dependence. The highest averages of real (1.52) and imaginary parts (0.0165) were found in spring and winter respectively in the wavelength range of 440–1020 nm. The aerosol properties over Beijing were found to highly dependent on season, and changes in aerosol properties were mainly attributed to the presence of dust as the main component during the spring season and the dominance of anthropogenic pollutants during the winter season.
Seasonal variability of aerosol optical properties over Beijing
Yu, Xingna (author) / Zhu, Bin (author) / Zhang, Meigen (author)
Atmospheric Environment ; 43 ; 4095-4101
2009-03-16
7 pages
Article (Journal)
Electronic Resource
English
Comparison of aerosol optical properties from Beijing and Kanpur
Elsevier | 2011
|Seasonal Variability of Satellite-Derived Aerosol Optical Depth in Smart City, Bhubaneshwar
Springer Verlag | 2020
|Spatial and seasonal variability of carbonaceous aerosol across Italy
Elsevier | 2014
|