A platform for research: civil engineering, architecture and urbanism
Pareto-improving ramp metering strategies for reducing congestion in the morning commute
AbstractThis paper presents an alternative approach to internalize congestion externality during the morning commute. We consider a linear freeway with multiple on-ramps and a downstream bottleneck and commuters accessing the freeway via different on-ramps try to arrive at work on time. Rather than charging congestion tolls as widely suggested by economists, we show that the old-fashioned engineering approach – ramp metering – can be a powerful tool to affect travelers’ departure time choice and thereby alter the congestion externality distribution among travelers. With carefully designed time-dependent metering plans, travelers from different origins can be channelized and will access the freeway bottleneck in different time periods, resulting in less total cost for the system compared to the no-metering case. The metering strategies are Pareto-improving, with travelers from the on-ramp with the highest priority having the smallest individual costs and travelers from the on-ramp with the lowest priority having their costs equal to those in the no-metering scenario. By changing the priority order of the ramps periodically, the benefit of the Pareto-improving metering strategies can be distributed evenly among all travelers. Numerical experiments show that the total user cost can be reduced by up to 40% with the proposed metering strategies. This study offers researchers and policy makers a different angle of looking at congestion externality, and the results provide an overview of the potential long term benefits that dynamic ramp metering strategies can achieve.
Pareto-improving ramp metering strategies for reducing congestion in the morning commute
AbstractThis paper presents an alternative approach to internalize congestion externality during the morning commute. We consider a linear freeway with multiple on-ramps and a downstream bottleneck and commuters accessing the freeway via different on-ramps try to arrive at work on time. Rather than charging congestion tolls as widely suggested by economists, we show that the old-fashioned engineering approach – ramp metering – can be a powerful tool to affect travelers’ departure time choice and thereby alter the congestion externality distribution among travelers. With carefully designed time-dependent metering plans, travelers from different origins can be channelized and will access the freeway bottleneck in different time periods, resulting in less total cost for the system compared to the no-metering case. The metering strategies are Pareto-improving, with travelers from the on-ramp with the highest priority having the smallest individual costs and travelers from the on-ramp with the lowest priority having their costs equal to those in the no-metering scenario. By changing the priority order of the ramps periodically, the benefit of the Pareto-improving metering strategies can be distributed evenly among all travelers. Numerical experiments show that the total user cost can be reduced by up to 40% with the proposed metering strategies. This study offers researchers and policy makers a different angle of looking at congestion externality, and the results provide an overview of the potential long term benefits that dynamic ramp metering strategies can achieve.
Pareto-improving ramp metering strategies for reducing congestion in the morning commute
Shen, Wei (author) / Zhang, H.M. (author)
Transportation Research Part A: Policy and Practice ; 44 ; 676-696
2010-07-04
21 pages
Article (Journal)
Electronic Resource
English
Pareto-improving ramp metering strategies for reducing congestion in the morning commute
Online Contents | 2010
|A Ramp Metering Strategy for Rapid Congestion Recovery
Wiley | 2015
|A Ramp Metering Strategy for Rapid Congestion Recovery
Online Contents | 2015
|