A platform for research: civil engineering, architecture and urbanism
Numerical modeling of bending of micropolar plates
Abstract In this paper we present the Finite Element modeling of the bending of micropolar elastic plates. Based on our recently published enhanced mathematical model for Cosserat plate bending, we present the micropolar plate field equations as an elliptic system of nine differential equations in terms of the kinematic variables. The system includes an optimal value of the splitting parameter, which is the minimizer of the micropolar plate stress energy. We present the efficient algorithm for the estimation of the optimal value of this parameter and discuss the approximations of stress and couple stress components. The numerical algorithm also includes the method for finding the unique solution of the micropolar plate field equations corresponding to the optimal value of the splitting parameter. We provide the results of the numerical modeling for the plates made of polyurethane foam used in structural insulated panels. The comparison of the numerical values of the vertical deflection for the square plate made of dense polyurethane foam with the analytical solution of the three-dimensional micropolar elasticity confirms the high order of approximation of the three-dimensional (exact) solution. The size effect of micropolar plate theory predicts that plates made of smaller thickness will be more rigid than would be expected on the basis of the Reissner plate theory. We present the numerical results for plates of different shapes, including shapes with rectangular holes, under different loads.
Highlights The numerical modeling is based on the Enhanced Bending Theory for Cosserat plates. The paper presents the Finite Element modeling of the plate bending. The efficient algorithm for the estimation of the optimal value of the splitting parameter has been presented. The comparison with the three-dimensional elasticity confirmed the high order of approximation. The proposed micropolar plate theory predicts the size effect of the bending.
Numerical modeling of bending of micropolar plates
Abstract In this paper we present the Finite Element modeling of the bending of micropolar elastic plates. Based on our recently published enhanced mathematical model for Cosserat plate bending, we present the micropolar plate field equations as an elliptic system of nine differential equations in terms of the kinematic variables. The system includes an optimal value of the splitting parameter, which is the minimizer of the micropolar plate stress energy. We present the efficient algorithm for the estimation of the optimal value of this parameter and discuss the approximations of stress and couple stress components. The numerical algorithm also includes the method for finding the unique solution of the micropolar plate field equations corresponding to the optimal value of the splitting parameter. We provide the results of the numerical modeling for the plates made of polyurethane foam used in structural insulated panels. The comparison of the numerical values of the vertical deflection for the square plate made of dense polyurethane foam with the analytical solution of the three-dimensional micropolar elasticity confirms the high order of approximation of the three-dimensional (exact) solution. The size effect of micropolar plate theory predicts that plates made of smaller thickness will be more rigid than would be expected on the basis of the Reissner plate theory. We present the numerical results for plates of different shapes, including shapes with rectangular holes, under different loads.
Highlights The numerical modeling is based on the Enhanced Bending Theory for Cosserat plates. The paper presents the Finite Element modeling of the plate bending. The efficient algorithm for the estimation of the optimal value of the splitting parameter has been presented. The comparison with the three-dimensional elasticity confirmed the high order of approximation. The proposed micropolar plate theory predicts the size effect of the bending.
Numerical modeling of bending of micropolar plates
Kvasov, Roman (author) / Steinberg, Lev (author)
Thin-Walled Structures ; 69 ; 67-78
2013-04-02
12 pages
Article (Journal)
Electronic Resource
English
Numerical modeling of bending of micropolar plates
Online Contents | 2013
|The theory of thermoelastic bending of micropolar thin plates
British Library Conference Proceedings | 2005
|Dynamic Theory of Micropolar Elastic Thin Plates
British Library Online Contents | 2007
|Numerical methods in bending and buckling of plates
Engineering Index Backfile | 1963
|Micropolar peridynamic modeling of concrete structures
British Library Conference Proceedings | 2007
|