A platform for research: civil engineering, architecture and urbanism
Behaviour of C-shaped angle shear connectors under monotonic and fully reversed cyclic loading: An experimental study
Highlights ► C-shaped angle connectors show 8.8–33.1% strength degradation under cyclic loading. ► Connector fracture type of failure was experienced in C-shaped angle shear connectors. ► In push-out samples, more cracking was observed in those slabs with longer angles. ► C-shaped angle connectors show good behaviour in terms of the ultimate shear capacity. ► C-shaped angle connectors did not fulfil the requirements for ductility criteria.
Abstract This paper presents an evaluation of the structural behaviour of C-shaped angle shear connectors in composite beams, suitable for transferring shear force in composite structures. The results of the experimental programme, including eight push-out tests, are presented and discussed. The results include resistance, strength degradation, ductility, and failure modes of C-shaped angle shear connectors, under monotonic and fully reversed cyclic loading. The results show that connector fracture type of failure was experienced in C-shaped angle connectors and after the failure, more cracking was observed in those slabs with longer angles. On top of that, by comparing the shear resistance of C-shaped angle shear connectors under monotonic and cyclic loading, these connectors showed 8.8–33.1% strength degradation, under fully reversed cyclic loading. Furthermore, it was concluded that the mentioned shear connector shows a proper behaviour, in terms of the ultimate shear capacity, but it does not satisfy the ductility criteria, imposed by the Eurocode 4, to perform a plastic distribution of the shear force between different connectors along the beam length.
Behaviour of C-shaped angle shear connectors under monotonic and fully reversed cyclic loading: An experimental study
Highlights ► C-shaped angle connectors show 8.8–33.1% strength degradation under cyclic loading. ► Connector fracture type of failure was experienced in C-shaped angle shear connectors. ► In push-out samples, more cracking was observed in those slabs with longer angles. ► C-shaped angle connectors show good behaviour in terms of the ultimate shear capacity. ► C-shaped angle connectors did not fulfil the requirements for ductility criteria.
Abstract This paper presents an evaluation of the structural behaviour of C-shaped angle shear connectors in composite beams, suitable for transferring shear force in composite structures. The results of the experimental programme, including eight push-out tests, are presented and discussed. The results include resistance, strength degradation, ductility, and failure modes of C-shaped angle shear connectors, under monotonic and fully reversed cyclic loading. The results show that connector fracture type of failure was experienced in C-shaped angle connectors and after the failure, more cracking was observed in those slabs with longer angles. On top of that, by comparing the shear resistance of C-shaped angle shear connectors under monotonic and cyclic loading, these connectors showed 8.8–33.1% strength degradation, under fully reversed cyclic loading. Furthermore, it was concluded that the mentioned shear connector shows a proper behaviour, in terms of the ultimate shear capacity, but it does not satisfy the ductility criteria, imposed by the Eurocode 4, to perform a plastic distribution of the shear force between different connectors along the beam length.
Behaviour of C-shaped angle shear connectors under monotonic and fully reversed cyclic loading: An experimental study
Shariati, Mahdi (author) / Ramli Sulong, N.H. (author) / Suhatril, Meldi (author) / Shariati, Ali (author) / Arabnejad Khanouki, M.M. (author) / Sinaei, Hamid (author)
2012-04-19
7 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2012
|British Library Online Contents | 2013
|