A platform for research: civil engineering, architecture and urbanism
Large deformation elastic electro-osmosis consolidation of clays
Abstract This paper presents the theoretical background of an elastic electro-osmosis consolidation model for saturated soils experiencing large strains, which considers volumetric strains induced by changes in both the hydraulic and electric driven pore water flows. Three fully coupled governing equations, considering the soil mechanical behaviour, pore water transport and electrical field, and their numerical implementation within an updated Lagrangian finite element formulation, are presented. The proposed model is first verified against a classical one-dimensional analytical solution for electro-osmosis consolidation to demonstrate its accuracy and efficiency. Then, various numerical examples are investigated to study the deformation characteristics and time dependent evolution of excess pore pressure. Finally, the importance of considering large strains in a consistent and proper way is demonstrated, and differences compared to models based on small strain theory are highlighted.
Large deformation elastic electro-osmosis consolidation of clays
Abstract This paper presents the theoretical background of an elastic electro-osmosis consolidation model for saturated soils experiencing large strains, which considers volumetric strains induced by changes in both the hydraulic and electric driven pore water flows. Three fully coupled governing equations, considering the soil mechanical behaviour, pore water transport and electrical field, and their numerical implementation within an updated Lagrangian finite element formulation, are presented. The proposed model is first verified against a classical one-dimensional analytical solution for electro-osmosis consolidation to demonstrate its accuracy and efficiency. Then, various numerical examples are investigated to study the deformation characteristics and time dependent evolution of excess pore pressure. Finally, the importance of considering large strains in a consistent and proper way is demonstrated, and differences compared to models based on small strain theory are highlighted.
Large deformation elastic electro-osmosis consolidation of clays
Yuan, J. (author) / Hicks, M.A. (author)
Computers and Geotechnics ; 54 ; 60-68
2013-05-31
9 pages
Article (Journal)
Electronic Resource
English
Large deformation elastic electro-osmosis consolidation of clays
Elsevier | 2013
|Large deformation elastic electro-osmosis consolidation of clays
Online Contents | 2013
|Electro-osmosis on clays in 1D-centrifuge test
British Library Conference Proceedings | 2002
|