A platform for research: civil engineering, architecture and urbanism
Corner properties of cold-formed steel sections at elevated temperatures
AbstractThis paper presents the mechanical properties of the corner parts of cold-formed steel sections at elevated temperatures. Light-gauge structural members are cold-formed which results the mechanical properties of the corner parts being different from the flat parts. However, previous research has focused on the investigation of the corner parts of cold-formed steel sections at normal room temperature and the performance of the corner parts at elevated temperatures is unknown. An appropriate model for fire resistant design of steel structures necessitates a correct representation of mechanical properties of structural steel at elevated temperatures. Therefore, experimental investigation on corner coupon specimens at different temperatures ranged from approximately 20 to 1000°C was conducted to study the behaviour of the corner parts of cold-formed steel sections at elevated temperatures. Two kinds of corner coupon specimens, namely the inner corner coupon specimens and outer corner coupon specimens having the steel grade of G500 (nominal 0.2% proof stress of 500MPa) and nominal thickness of 1.9mm were tested. The test results were compared with the flat coupon specimens taken from the same cold-formed steel sections as the corner coupon specimens. A unified equation to predict the yield strength (0.2% proof stress), elastic modulus, ultimate strength and ultimate strain of the corner parts of cold-formed steel sections at elevated temperatures is thus proposed in this paper. Generally, it is shown that the proposed equation adequately predicts the test results of the corner coupon specimens. Furthermore, stress–strain curves at different temperatures are plotted and a stress–strain model is also proposed for the corner parts of cold-formed steel sections.
Corner properties of cold-formed steel sections at elevated temperatures
AbstractThis paper presents the mechanical properties of the corner parts of cold-formed steel sections at elevated temperatures. Light-gauge structural members are cold-formed which results the mechanical properties of the corner parts being different from the flat parts. However, previous research has focused on the investigation of the corner parts of cold-formed steel sections at normal room temperature and the performance of the corner parts at elevated temperatures is unknown. An appropriate model for fire resistant design of steel structures necessitates a correct representation of mechanical properties of structural steel at elevated temperatures. Therefore, experimental investigation on corner coupon specimens at different temperatures ranged from approximately 20 to 1000°C was conducted to study the behaviour of the corner parts of cold-formed steel sections at elevated temperatures. Two kinds of corner coupon specimens, namely the inner corner coupon specimens and outer corner coupon specimens having the steel grade of G500 (nominal 0.2% proof stress of 500MPa) and nominal thickness of 1.9mm were tested. The test results were compared with the flat coupon specimens taken from the same cold-formed steel sections as the corner coupon specimens. A unified equation to predict the yield strength (0.2% proof stress), elastic modulus, ultimate strength and ultimate strain of the corner parts of cold-formed steel sections at elevated temperatures is thus proposed in this paper. Generally, it is shown that the proposed equation adequately predicts the test results of the corner coupon specimens. Furthermore, stress–strain curves at different temperatures are plotted and a stress–strain model is also proposed for the corner parts of cold-formed steel sections.
Corner properties of cold-formed steel sections at elevated temperatures
Chen, Ju (author) / Young, Ben (author)
Thin-Walled Structures ; 44 ; 216-223
2006-01-24
8 pages
Article (Journal)
Electronic Resource
English
Corner properties of cold-formed steel sections at elevated temperatures
Online Contents | 2006
|Mechanical Properties of Cold-Formed Steel at Elevated Temperatures
British Library Conference Proceedings | 2004
|Elevated temperature material properties of cold-formed steel hollow sections
Online Contents | 2015
|