A platform for research: civil engineering, architecture and urbanism
Surface ozone in Yosemite National Park
AbstractDuring the summers of 2003 and 2005, surface ozone concentrations were measured with portable ozone monitors at multiple locations in and around Yosemite National Park. The goal of these measurements was to obtain a comprehensive survey of ozone within Yosemite, which will help modelers predict and interpolate ozone concentrations in remote locations and complex terrain. The data from the portable monitors were combined with concurrent and historical data from two long-term monitoring stations located within the park (Turtleback Dome and Merced River) and previous investigations with passive samplers. The results indicate that most sites in Yosemite experience roughly similar ozone concentrations during well-mixed daytime periods, but dissimilar concentrations at night. Locations that are well exposed to the free troposphere during evening hours tend to experience higher (and more variable) nocturnal ozone concentrations, resulting in smaller diurnal variations and higher overall ozone exposures. Locations that are poorly exposed to the free troposphere during nocturnal periods tend to experience very low evening ozone, yielding larger diurnal variations and smaller overall exposures. Ozone concentrations are typically highest for the western and southern portions of the park and lower for the eastern and northern regions, with substantial spatial and temporal variability. Back-trajectory analyses suggest that air with high ozone concentrations at Yosemite often originates in the San Francisco Bay Area and progresses through the Central California Valley before entering the park.
Surface ozone in Yosemite National Park
AbstractDuring the summers of 2003 and 2005, surface ozone concentrations were measured with portable ozone monitors at multiple locations in and around Yosemite National Park. The goal of these measurements was to obtain a comprehensive survey of ozone within Yosemite, which will help modelers predict and interpolate ozone concentrations in remote locations and complex terrain. The data from the portable monitors were combined with concurrent and historical data from two long-term monitoring stations located within the park (Turtleback Dome and Merced River) and previous investigations with passive samplers. The results indicate that most sites in Yosemite experience roughly similar ozone concentrations during well-mixed daytime periods, but dissimilar concentrations at night. Locations that are well exposed to the free troposphere during evening hours tend to experience higher (and more variable) nocturnal ozone concentrations, resulting in smaller diurnal variations and higher overall ozone exposures. Locations that are poorly exposed to the free troposphere during nocturnal periods tend to experience very low evening ozone, yielding larger diurnal variations and smaller overall exposures. Ozone concentrations are typically highest for the western and southern portions of the park and lower for the eastern and northern regions, with substantial spatial and temporal variability. Back-trajectory analyses suggest that air with high ozone concentrations at Yosemite often originates in the San Francisco Bay Area and progresses through the Central California Valley before entering the park.
Surface ozone in Yosemite National Park
Burley, Joel D. (author) / Ray, John D. (author)
Atmospheric Environment ; 41 ; 6048-6062
2007-03-09
15 pages
Article (Journal)
Electronic Resource
English
Stonefaced arch bridges, Yosemite National Park
Engineering Index Backfile | 1928
|Rockfalls in Yosemite National Park, California
Wiley | 1989
|Driving 4,230-ft tunnel in Yosemite National Park
Engineering Index Backfile | 1933
|