A platform for research: civil engineering, architecture and urbanism
Cyclic behavior of Peruvian confined masonry walls and calibration of numerical model using genetic algorithms
Graphical abstract Display Omitted
Highlights The experimental results of four full-scale confined masonry walls are presented. The parameters to define the smooth hysteretic model were calibrated using GA. The results of the numerical simulation are in good agreement with test results. The calibrated model will be used to develop fragility curves in a future study.
Abstract The experimental results of four full-scale confined masonry (CM) walls subjected to cycling loading are presented. These structural elements are widely used in low- and mid-rise buildings in Peru to take the vertical and lateral loads. The objective of these experiments was to evaluate the cyclic behavior of CM walls constructed with handmade bricks and lime mortar. The brick units used in the walls were made of clay, and they were considered to be solid components. In the experiment, the dimensions of all the walls were kept constant in all specimens, but the reinforcement ratios of the confining elements (bond beam and tie-columns) were changed. The structural behaviors were examined in terms of the strength, lateral stiffness, dissipated energy, and equivalent viscous damping. Finally, an equivalent macro-model based on an equivalent strut approach with a smooth hysteretic model was calibrated and validated in order to reproduce the behaviors of the CM walls. For this purpose, we used a genetic algorithm (GA) that considered the experimental results of a CM wall. The parameters were applied to the results of the other CM walls to evaluate their applicability. The results of numerical simulations showed good agreement with the experimental results.
Cyclic behavior of Peruvian confined masonry walls and calibration of numerical model using genetic algorithms
Graphical abstract Display Omitted
Highlights The experimental results of four full-scale confined masonry walls are presented. The parameters to define the smooth hysteretic model were calibrated using GA. The results of the numerical simulation are in good agreement with test results. The calibrated model will be used to develop fragility curves in a future study.
Abstract The experimental results of four full-scale confined masonry (CM) walls subjected to cycling loading are presented. These structural elements are widely used in low- and mid-rise buildings in Peru to take the vertical and lateral loads. The objective of these experiments was to evaluate the cyclic behavior of CM walls constructed with handmade bricks and lime mortar. The brick units used in the walls were made of clay, and they were considered to be solid components. In the experiment, the dimensions of all the walls were kept constant in all specimens, but the reinforcement ratios of the confining elements (bond beam and tie-columns) were changed. The structural behaviors were examined in terms of the strength, lateral stiffness, dissipated energy, and equivalent viscous damping. Finally, an equivalent macro-model based on an equivalent strut approach with a smooth hysteretic model was calibrated and validated in order to reproduce the behaviors of the CM walls. For this purpose, we used a genetic algorithm (GA) that considered the experimental results of a CM wall. The parameters were applied to the results of the other CM walls to evaluate their applicability. The results of numerical simulations showed good agreement with the experimental results.
Cyclic behavior of Peruvian confined masonry walls and calibration of numerical model using genetic algorithms
Quiroz, Luis G. (author) / Maruyama, Yoshihisa (author) / Zavala, Carlos (author)
Engineering Structures ; 75 ; 561-576
2014-06-19
16 pages
Article (Journal)
Electronic Resource
English
Cyclic behavior of combined and confined masonry walls
Online Contents | 2009
|Cyclic behavior of combined and confined masonry walls
Elsevier | 2008
|Cyclic behavior of combined and confined masonry walls
Online Contents | 2009
|Cyclic Load Behavior of Confined Masonry Walls Using Silica Lime 11H Bricks
British Library Conference Proceedings | 2019
|