A platform for research: civil engineering, architecture and urbanism
Dynamic response of offshore jacket structures under random loads
AbstractIn this paper, the dynamic response of a scale model of a jacket offshore structure is investigated both theoretically and experimentally. The experiments were conducted both in air and in water. The in-water experiments were done in the towing tank of Memorial University to simulate the realistic operating conditions. The model was subjected to random wave loads. Froude's law of modeling was used to obtain the dimensions of the scale model based on the dimensions of an existing structure. The effects of varying the structure's weight, and the characteristics of the wave loading were investigated. The structure's weight was changed by adding weights to the structure's deck. A finite element model was designed to determine the dynamic response of the model. Excellent agreement between the experimental and theoretical results was obtained.The reaction force at the foundation was estimated from strain measurements and compared with the finite element calculations. Fair agreement was obtained.This work is the first stage of a project whose objective is to develop a method for structural damage detection using the free vibration response of the structure. The free vibration response will be obtained from the stationary random response of the structure using the random decrement method. Having an accurate model to describe the dynamic response of the structure is the first step in this study.
Dynamic response of offshore jacket structures under random loads
AbstractIn this paper, the dynamic response of a scale model of a jacket offshore structure is investigated both theoretically and experimentally. The experiments were conducted both in air and in water. The in-water experiments were done in the towing tank of Memorial University to simulate the realistic operating conditions. The model was subjected to random wave loads. Froude's law of modeling was used to obtain the dimensions of the scale model based on the dimensions of an existing structure. The effects of varying the structure's weight, and the characteristics of the wave loading were investigated. The structure's weight was changed by adding weights to the structure's deck. A finite element model was designed to determine the dynamic response of the model. Excellent agreement between the experimental and theoretical results was obtained.The reaction force at the foundation was estimated from strain measurements and compared with the finite element calculations. Fair agreement was obtained.This work is the first stage of a project whose objective is to develop a method for structural damage detection using the free vibration response of the structure. The free vibration response will be obtained from the stationary random response of the structure using the random decrement method. Having an accurate model to describe the dynamic response of the structure is the first step in this study.
Dynamic response of offshore jacket structures under random loads
Elshafey, Ahmed A. (author) / Haddara, Mahmoud R. (author) / Marzouk, H. (author)
Marine Structures ; 22 ; 504-521
2009-01-28
18 pages
Article (Journal)
Electronic Resource
English
Dynamic response of offshore jacket structures under random loads
Online Contents | 2009
|Dynamic response of offshore jacket structures under random loads
Online Contents | 2009
|Dynamic response of offshore jacket structures under random loads
British Library Online Contents | 2009
|Foundation Engineering of Offshore ``Jacket'' Structures
British Library Conference Proceedings | 2009
|