A platform for research: civil engineering, architecture and urbanism
Multi-objective global dynamic optimal scheduling of smart building loads considering carbon emissions
Abstract In recent years, there has been a significant increase in electricity consumption and carbon emissions from households in smart buildings. This increase has had a profound impact on the economic aspects of residential electricity consumption and the achievement of the national dual carbon goal. In this paper, an optimal scheduling model for household loads in smart buildings is established. It considers the user demand side, grid-side supply, and the impact of the PV energy storage system (PESS) on carbon emissions. The optimization objectives are the economy of household electricity consumption and the total deviation of electricity consumption. Second, the adaptive mixed inverse learning strategy multi-objective beluga optimization algorithm (AMOBWO) is adopted to enhance its overall dynamic optimization. This optimization addresses challenges such as the uneven distribution of electricity consumption, load timing constraints, power limitations, and uncertainty in electricity consumption during the scheduling of smart building loads. Finally, the results demonstrate that AMOBWO decreases the total cost of household electricity consumption in smart buildings by 59.32% (based on the selected maximum PV capacity). Additionally, it reduces the total deviation by 14.28% after optimal scheduling. As the PESS capacity increases, there is a significant reduction in the indirect carbon emissions from smart buildings, decreasing from 881.279 kg CO2 to 431.299 kg CO2.
Multi-objective global dynamic optimal scheduling of smart building loads considering carbon emissions
Abstract In recent years, there has been a significant increase in electricity consumption and carbon emissions from households in smart buildings. This increase has had a profound impact on the economic aspects of residential electricity consumption and the achievement of the national dual carbon goal. In this paper, an optimal scheduling model for household loads in smart buildings is established. It considers the user demand side, grid-side supply, and the impact of the PV energy storage system (PESS) on carbon emissions. The optimization objectives are the economy of household electricity consumption and the total deviation of electricity consumption. Second, the adaptive mixed inverse learning strategy multi-objective beluga optimization algorithm (AMOBWO) is adopted to enhance its overall dynamic optimization. This optimization addresses challenges such as the uneven distribution of electricity consumption, load timing constraints, power limitations, and uncertainty in electricity consumption during the scheduling of smart building loads. Finally, the results demonstrate that AMOBWO decreases the total cost of household electricity consumption in smart buildings by 59.32% (based on the selected maximum PV capacity). Additionally, it reduces the total deviation by 14.28% after optimal scheduling. As the PESS capacity increases, there is a significant reduction in the indirect carbon emissions from smart buildings, decreasing from 881.279 kg CO2 to 431.299 kg CO2.
Multi-objective global dynamic optimal scheduling of smart building loads considering carbon emissions
Yi, Lingzhi (author) / Zhang, Huiting (author) / Wang, Yahui (author) / Luo, Bote (author) / Fan, Lv (author) / Liu, Jiangyong (author) / hua Li, Guang (author)
Energy and Buildings ; 301
2023-11-08
Article (Journal)
Electronic Resource
English
Multi-Objective Energy Optimal Scheduling of Multiple Pulsed Loads in Isolated Power Systems
DOAJ | 2022
|Multi-Objective Optimal Power Flow Calculation Considering Carbon Emission Intensity
DOAJ | 2023
|