A platform for research: civil engineering, architecture and urbanism
Modelled channel patterns in a schematized tidal inlet
AbstractTidal inlets in the Dutch Wadden Sea show typical morphological features, i.e. westward oriented main inlet channel and ebb-tidal delta. The objective of this study is to find the governing physical processes of these morphological features. The study uses a 2DH process-based morphodynamic model (Delft3D) on a schematized model domain, with dimensions similar to the Ameland inlet in the Dutch Wadden Sea.Starting from a flat bed the models are forced by tides only. Short-term simulations are made to explore the hydrodynamic characteristics and initial sedimentation and erosion patterns. Long-term morphodynamic simulations are employed to investigate the governing parameters of the main inlet channel and the ebb-tidal delta evolution. Sensitivity of the evolution is described in terms of initial inlet width (1.0 km and 3.5 km), direction and asymmetry of tidal forcing (M2, M4), transport formulations (Van Rijn, 1993; Engelund and Hansen, 1967) and relative position of the tidal basin with respect to the inlet (East (existing), Middle, and West).The results tend to produce morphological features typical to the Ameland inlet. The direction of tidal forcing is the main governing parameter to the present orientation of the main inlet channel and the ebb-tidal delta. The model results generally prove the conceptual hypotheses that describe the orientation of the main inlet channel and the ebb-tidal delta.
Modelled channel patterns in a schematized tidal inlet
AbstractTidal inlets in the Dutch Wadden Sea show typical morphological features, i.e. westward oriented main inlet channel and ebb-tidal delta. The objective of this study is to find the governing physical processes of these morphological features. The study uses a 2DH process-based morphodynamic model (Delft3D) on a schematized model domain, with dimensions similar to the Ameland inlet in the Dutch Wadden Sea.Starting from a flat bed the models are forced by tides only. Short-term simulations are made to explore the hydrodynamic characteristics and initial sedimentation and erosion patterns. Long-term morphodynamic simulations are employed to investigate the governing parameters of the main inlet channel and the ebb-tidal delta evolution. Sensitivity of the evolution is described in terms of initial inlet width (1.0 km and 3.5 km), direction and asymmetry of tidal forcing (M2, M4), transport formulations (Van Rijn, 1993; Engelund and Hansen, 1967) and relative position of the tidal basin with respect to the inlet (East (existing), Middle, and West).The results tend to produce morphological features typical to the Ameland inlet. The direction of tidal forcing is the main governing parameter to the present orientation of the main inlet channel and the ebb-tidal delta. The model results generally prove the conceptual hypotheses that describe the orientation of the main inlet channel and the ebb-tidal delta.
Modelled channel patterns in a schematized tidal inlet
Dissanayake, D.M.P.K. (author) / Roelvink, J.A. (author) / van der Wegen, M. (author)
Coastal Engineering ; 56 ; 1069-1083
2009-08-18
15 pages
Article (Journal)
Electronic Resource
English
Modelled channel patterns in a schematized tidal inlet
Online Contents | 2009
|Modelled channel patterns in a schematized tidal inlet
British Library Online Contents | 2009
|Modelled channel patterns in a schematized tidal inlet
Online Contents | 2009
|Re-Alignment of an Inlet Entrance Channel by Ebb-Tidal Eddies
British Library Conference Proceedings | 2001
|British Library Conference Proceedings | 2009
|