A platform for research: civil engineering, architecture and urbanism
On-line building energy prediction using adaptive artificial neural networks
AbstractWhile most of the existing artificial neural networks (ANN) models for building energy prediction are static in nature, this paper evaluates the performance of adaptive ANN models that are capable of adapting themselves to unexpected pattern changes in the incoming data, and therefore can be used for the real-time on-line building energy prediction. Two adaptive ANN models are proposed and tested: accumulative training and sliding window training. The computational experiments presented in the paper use both simulated (synthetic) data and measured data. In the case of synthetic data, the accumulative training technique appears to have an almost equal performance with the sliding window training approach, in terms of training time and accuracy. In the case of real measurements, the sliding window technique gives better results, compared with the accumulative training, if the coefficient of variance is used as an indicator.
On-line building energy prediction using adaptive artificial neural networks
AbstractWhile most of the existing artificial neural networks (ANN) models for building energy prediction are static in nature, this paper evaluates the performance of adaptive ANN models that are capable of adapting themselves to unexpected pattern changes in the incoming data, and therefore can be used for the real-time on-line building energy prediction. Two adaptive ANN models are proposed and tested: accumulative training and sliding window training. The computational experiments presented in the paper use both simulated (synthetic) data and measured data. In the case of synthetic data, the accumulative training technique appears to have an almost equal performance with the sliding window training approach, in terms of training time and accuracy. In the case of real measurements, the sliding window technique gives better results, compared with the accumulative training, if the coefficient of variance is used as an indicator.
On-line building energy prediction using adaptive artificial neural networks
Yang, Jin (author) / Rivard, Hugues (author) / Zmeureanu, Radu (author)
Energy and Buildings ; 37 ; 1250-1259
2005-02-10
10 pages
Article (Journal)
Electronic Resource
English
On-line building energy prediction using adaptive artificial neural networks
Online Contents | 2005
|Prediction of building energy consumption by using artificial neural networks
Tema Archive | 2009
|Prediction of Runoff Using Artificial Neural Networks
HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2010
|