A platform for research: civil engineering, architecture and urbanism
AIoT-informed digital twin communication for bridge maintenance
Abstract Digital twin (DT) has been moving progressively from concept to practice for bridge operation and maintenance (O&M), but its issues of data synchronization and fault tolerance remain problematic. This paper investigates the time delay of bridge DT services according to communication and computation complexity, revealing the distinct impact of their sequence, and proposes an AIoT-informed DT communication framework to solve the above issues. The information hierarchy and two-way communication can be leveraged to minimize communication complexity in the framework. Meanwhile, the data flow and resilience of the proposed framework are demonstrated using a Petri net. Moreover, the framework is developed into a prototypical DT through cross-platform integration and validated with different cases. The results demonstrate that compared with other existing bridge DTs, the proposed framework has high efficiency, low-latency, and excellent fault tolerance, which can contribute to the efficiency and safety of bridge O&M, especially under communication-constraint circumstances. The framework is also promising for federated learning to protect the AI-model privacy of different stakeholders and has the potential to support agent-based intelligent bridge management in the future with little human intervention.
Highlights An AIoT-informed DT communication framework is proposed to support smart bridge O&M with high efficiency, low latency, and excellent fault tolerance to endure a temporary loss of communication, as well as developed into a cross-platform prototype, which is validated through different cases. The time delay of bridge DT services is studied in this paper, revealing the significant impact of communicaiton complexity, as well as how to minimize it through information hierarchy and two-way communcation. The bridge DT is idealized in state-space representation with time delay. Moreover, the data flow and resilience of the proposed framework are demonstrated using a Petri net with tokens and conditional probability respectively.
AIoT-informed digital twin communication for bridge maintenance
Abstract Digital twin (DT) has been moving progressively from concept to practice for bridge operation and maintenance (O&M), but its issues of data synchronization and fault tolerance remain problematic. This paper investigates the time delay of bridge DT services according to communication and computation complexity, revealing the distinct impact of their sequence, and proposes an AIoT-informed DT communication framework to solve the above issues. The information hierarchy and two-way communication can be leveraged to minimize communication complexity in the framework. Meanwhile, the data flow and resilience of the proposed framework are demonstrated using a Petri net. Moreover, the framework is developed into a prototypical DT through cross-platform integration and validated with different cases. The results demonstrate that compared with other existing bridge DTs, the proposed framework has high efficiency, low-latency, and excellent fault tolerance, which can contribute to the efficiency and safety of bridge O&M, especially under communication-constraint circumstances. The framework is also promising for federated learning to protect the AI-model privacy of different stakeholders and has the potential to support agent-based intelligent bridge management in the future with little human intervention.
Highlights An AIoT-informed DT communication framework is proposed to support smart bridge O&M with high efficiency, low latency, and excellent fault tolerance to endure a temporary loss of communication, as well as developed into a cross-platform prototype, which is validated through different cases. The time delay of bridge DT services is studied in this paper, revealing the significant impact of communicaiton complexity, as well as how to minimize it through information hierarchy and two-way communcation. The bridge DT is idealized in state-space representation with time delay. Moreover, the data flow and resilience of the proposed framework are demonstrated using a Petri net with tokens and conditional probability respectively.
AIoT-informed digital twin communication for bridge maintenance
Gao, Yan (author) / Li, Haijiang (author) / Xiong, Guanyu (author) / Song, Honghong (author)
2023-03-11
Article (Journal)
Electronic Resource
English
Bridge Digital Twin for Practical Bridge Operation and Maintenance by Integrating GIS and BIM
DOAJ | 2024
|