A platform for research: civil engineering, architecture and urbanism
Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan
Abstract A long-term energy crisis has resulted in increased combustion of biomass fuel in industrial and household sectors in Pakistan. We report results of a study on the emission characteristics of rice husk, rice straw, corncobs and bagasse since they are frequently used as biomass fuel and differed remarkably in physico-chemical and combustion characteristics. Emission concentrations and emission factors were determined experimentally by burning the biomass fuel using a burning tower. Modified combustion efficiency (MCE) of rice husk, rice straw, corncobs and bagasse was >0.97 indicating that combustion was dominated by flaming mode. Emission factors of gaseous pollutants CO, CO2, NO2, NO, NOx and SO2 for rice straw were calculated to be 17.19 ± 0.28, 1090.07 ± 24.0, 0.89 ± 0.03, 1.48 ± 0.04, 3.16 ± 0.08 and 0.38 ± 0.03 g kg−1 respectively which were significantly (p < 0.05) higher compared to those from rice husk (14.05 ± 0.18, 880.48 ± 8.99, 0.19 ± 0.01, 1.38 ± 0.02, 2.31 ± 0.04 and 0.11 ± 0.03 g kg−1), corncobs (8.63 ± 0.12, 595.44 ± 10.38, 0.16 ± 0.01, 0.70 ± 0.01, 1.23 ± 0.02 and 0.02 ± 0.00 g kg−1) and bagasse (12.39 ± 0.08, 937.03 ± 9.07, 0.36 ± 0.03, 1.44 ± 0.02, 2.57 ± 0.04 and 0.18 ± 0.02 g kg−1). Total emissions of CO, CO2, NO2, NO, NOx and SO2 were estimated to be 3.68, 230.51, 0.05, 0.36, 0.60 and 0.03 Gg for rice husk, 33.75, 2140.35, 1.75, 2.91, 6.20 and 0.75 Gg for rice straw, 1.11, 76.28, 0.02, 0.02 and 0.03 Gg for corncobs and 42.12, 3185.53, 1.22, 4.90, 8.74 and 0.61 Gg for bagasse respectively. Rice straw, however, had significantly (p < 0.05) higher potential of gaseous pollutant emission factors. Bagasse had the highest values of total emissions followed by rice straw, rice husk and corncobs. Rice straw and bagasse, on cumulative basis, contributed more than 90% of total emissions of gaseous pollutants. Results reported in this study are important in formulating provincial and regional emission budgets of gaseous pollutants from burning of agricultural residues in Pakistan.
Highlights Energy crisis has resulted in increased combustion of crop residues in Pakistan. Emission attributes of rice husk, rice straw, corncobs and bagasse were estimated. Rice straw had significantly higher gaseous pollutant emission factors. Bagasse had the highest value of total emission of gaseous pollutants. Rice straw and bagasse had >90% share in total gaseous pollutant emissions.
Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan
Abstract A long-term energy crisis has resulted in increased combustion of biomass fuel in industrial and household sectors in Pakistan. We report results of a study on the emission characteristics of rice husk, rice straw, corncobs and bagasse since they are frequently used as biomass fuel and differed remarkably in physico-chemical and combustion characteristics. Emission concentrations and emission factors were determined experimentally by burning the biomass fuel using a burning tower. Modified combustion efficiency (MCE) of rice husk, rice straw, corncobs and bagasse was >0.97 indicating that combustion was dominated by flaming mode. Emission factors of gaseous pollutants CO, CO2, NO2, NO, NOx and SO2 for rice straw were calculated to be 17.19 ± 0.28, 1090.07 ± 24.0, 0.89 ± 0.03, 1.48 ± 0.04, 3.16 ± 0.08 and 0.38 ± 0.03 g kg−1 respectively which were significantly (p < 0.05) higher compared to those from rice husk (14.05 ± 0.18, 880.48 ± 8.99, 0.19 ± 0.01, 1.38 ± 0.02, 2.31 ± 0.04 and 0.11 ± 0.03 g kg−1), corncobs (8.63 ± 0.12, 595.44 ± 10.38, 0.16 ± 0.01, 0.70 ± 0.01, 1.23 ± 0.02 and 0.02 ± 0.00 g kg−1) and bagasse (12.39 ± 0.08, 937.03 ± 9.07, 0.36 ± 0.03, 1.44 ± 0.02, 2.57 ± 0.04 and 0.18 ± 0.02 g kg−1). Total emissions of CO, CO2, NO2, NO, NOx and SO2 were estimated to be 3.68, 230.51, 0.05, 0.36, 0.60 and 0.03 Gg for rice husk, 33.75, 2140.35, 1.75, 2.91, 6.20 and 0.75 Gg for rice straw, 1.11, 76.28, 0.02, 0.02 and 0.03 Gg for corncobs and 42.12, 3185.53, 1.22, 4.90, 8.74 and 0.61 Gg for bagasse respectively. Rice straw, however, had significantly (p < 0.05) higher potential of gaseous pollutant emission factors. Bagasse had the highest values of total emissions followed by rice straw, rice husk and corncobs. Rice straw and bagasse, on cumulative basis, contributed more than 90% of total emissions of gaseous pollutants. Results reported in this study are important in formulating provincial and regional emission budgets of gaseous pollutants from burning of agricultural residues in Pakistan.
Highlights Energy crisis has resulted in increased combustion of crop residues in Pakistan. Emission attributes of rice husk, rice straw, corncobs and bagasse were estimated. Rice straw had significantly higher gaseous pollutant emission factors. Bagasse had the highest value of total emission of gaseous pollutants. Rice straw and bagasse had >90% share in total gaseous pollutant emissions.
Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan
Irfan, Muhammad (author) / Riaz, Muhammad (author) / Arif, Muhammad Saleem (author) / Shahzad, Sher Muhammad (author) / Saleem, Farhan (author) / van den Berg, Leon (author) / Abbas, Farhat (author)
Atmospheric Environment ; 84 ; 189-197
2013-11-18
9 pages
Article (Journal)
Electronic Resource
English
Gaseous Organic Emissions From Various Types of Household Waste
British Library Conference Proceedings | 1997
|