A platform for research: civil engineering, architecture and urbanism
Mineralogy and spectral signature of reactive gossans, Victoria Island, NT, Canada
Abstract Gossans resulting from the oxidation of sulphide-rich bedrock occur sporadically across Canada, and these features are routinely indicated on geological maps published by the Geological Survey of Canada (GSC). In the Canadian Arctic Islands, some gossans display reactive zones in permafrost characterized by specific textures and mineralogical facies. In poorly-vegetated areas of the High Arctic, gossans can easily be detected on high-resolution satellite imagery. However, the mechanisms leading to their formation are poorly known. For this study, two reactive gossans located in the early Neoproterozoic Minto Inlier of Victoria Island, Northwest Territories, were investigated to determine if the deposits constitute (1) analogues of mine waste in permafrost and (2) vectors to economic resources. Mineralogy was determined in situ using a portable spectroradiometer, with follow-up laboratory measurements. Site 1, Gossan Hill, is a 75-m topographic high capped by a poorly consolidated, rust-coloured layer overlying pyrite-rich sands, and resembles a classic gossan. Site 2, Gossan Sill, underlies a mineralized gabbroic sill consisting of sulphide-rich veins and pods but appears to be inverted morphologically. Visible–Near Infrared–Short Wave Infrared spectral analyses of surficial materials at Gossan Hill indicate gypsum, goethite and jarosite, and X-ray diffraction (XRD) confirms their presence as well as quartz, illite and feldspar. At Sill Gossan, spectral analyses show gypsum and jarosite; XRD indicates variable amounts of goethite, hematite, pyrite, chlorite, calcite and feldspar. The positive relief and presence of concentric alteration zones at Gossan Hill suggest that cryogenic processes, typical of Arctic regions, are active. Water becomes expelled during the freezing cycle forcing material outwards and along with oxidation of the sulphides, forms variably coloured zones in gossanous material. The inverted stratigraphy at Sill Gossan is more problematic. Constant weathering and mass wasting from the overlying sill and pyrite-rich breccia provide fresh pyrite to the gossan on a regular (seasonal) basis.
Highlights Mineralogical study of two oxide-sulphide gossans encased in acidic permafrost Mineralogy was examined using portable infrared spectrometry and XRD analyses. Gossans consist of secondary minerals and clays that may be vectors to ore deposits. Both classic and inverted gossan profiles were identified.
Mineralogy and spectral signature of reactive gossans, Victoria Island, NT, Canada
Abstract Gossans resulting from the oxidation of sulphide-rich bedrock occur sporadically across Canada, and these features are routinely indicated on geological maps published by the Geological Survey of Canada (GSC). In the Canadian Arctic Islands, some gossans display reactive zones in permafrost characterized by specific textures and mineralogical facies. In poorly-vegetated areas of the High Arctic, gossans can easily be detected on high-resolution satellite imagery. However, the mechanisms leading to their formation are poorly known. For this study, two reactive gossans located in the early Neoproterozoic Minto Inlier of Victoria Island, Northwest Territories, were investigated to determine if the deposits constitute (1) analogues of mine waste in permafrost and (2) vectors to economic resources. Mineralogy was determined in situ using a portable spectroradiometer, with follow-up laboratory measurements. Site 1, Gossan Hill, is a 75-m topographic high capped by a poorly consolidated, rust-coloured layer overlying pyrite-rich sands, and resembles a classic gossan. Site 2, Gossan Sill, underlies a mineralized gabbroic sill consisting of sulphide-rich veins and pods but appears to be inverted morphologically. Visible–Near Infrared–Short Wave Infrared spectral analyses of surficial materials at Gossan Hill indicate gypsum, goethite and jarosite, and X-ray diffraction (XRD) confirms their presence as well as quartz, illite and feldspar. At Sill Gossan, spectral analyses show gypsum and jarosite; XRD indicates variable amounts of goethite, hematite, pyrite, chlorite, calcite and feldspar. The positive relief and presence of concentric alteration zones at Gossan Hill suggest that cryogenic processes, typical of Arctic regions, are active. Water becomes expelled during the freezing cycle forcing material outwards and along with oxidation of the sulphides, forms variably coloured zones in gossanous material. The inverted stratigraphy at Sill Gossan is more problematic. Constant weathering and mass wasting from the overlying sill and pyrite-rich breccia provide fresh pyrite to the gossan on a regular (seasonal) basis.
Highlights Mineralogical study of two oxide-sulphide gossans encased in acidic permafrost Mineralogy was examined using portable infrared spectrometry and XRD analyses. Gossans consist of secondary minerals and clays that may be vectors to ore deposits. Both classic and inverted gossan profiles were identified.
Mineralogy and spectral signature of reactive gossans, Victoria Island, NT, Canada
Percival, Jeanne B. (author) / Williamson, Marie-Claude (author)
Applied Clay Science ; 119 ; 431-440
2015-05-29
10 pages
Article (Journal)
Electronic Resource
English
Strawberry Vale School, Victoria, British Columbia Canada
British Library Online Contents | 1998
Strawberry Vale: School, Victoria, British Columbia, Canada
British Library Online Contents | 1997
Awards - Strawberry Vale School, Victoria, Canada Patkau Architects
Online Contents | 1995
Seismic Microzonation Mapping in Greater Victoria, British Columbia, Canada
British Library Conference Proceedings | 1998
|