A platform for research: civil engineering, architecture and urbanism
Bus frequency determination using passenger count data
Abstract The importance of ridership information has led transit properties to increase the amount of manually collected data or alternatively to introduce automated surveillance techniques. Naturally, the bus operators are expected to gain useful information for operations planning by obtaining more accurate passenger counts. This paper describes and analyzes several appropriate data collection approaches for the bus operator in order to set the bus frequencies/headways efficiently. Four different methods are presented to derive the bus frequency: two are based on point check (maximum load) data and two propose the use of ride check (load profile) data. A ride check provides more complete information than a point check, but at a greater cost, and there is a question as to whether the additional information gained justifies the expense. Based on available old profiles, the four methods provide the bus scheduler with adequate guidance in selecting the type of data collection procedure. In addition, the scheduler can evaluate the minimum expected bus runs when the load standard is released and avoid overcrowding (in an average sense) at the same time. Alternative timetables are also investigated in conjunction with minimizing the required bus runs and number of buses for a single route. In this way, the derived headways can be analyzed within an acceptable range while considering the possible changes incurred indirectly to the fleet size. The integration between resource saving and frequency determination procedures allows the scheduler's performance to be improved.
Bus frequency determination using passenger count data
Abstract The importance of ridership information has led transit properties to increase the amount of manually collected data or alternatively to introduce automated surveillance techniques. Naturally, the bus operators are expected to gain useful information for operations planning by obtaining more accurate passenger counts. This paper describes and analyzes several appropriate data collection approaches for the bus operator in order to set the bus frequencies/headways efficiently. Four different methods are presented to derive the bus frequency: two are based on point check (maximum load) data and two propose the use of ride check (load profile) data. A ride check provides more complete information than a point check, but at a greater cost, and there is a question as to whether the additional information gained justifies the expense. Based on available old profiles, the four methods provide the bus scheduler with adequate guidance in selecting the type of data collection procedure. In addition, the scheduler can evaluate the minimum expected bus runs when the load standard is released and avoid overcrowding (in an average sense) at the same time. Alternative timetables are also investigated in conjunction with minimizing the required bus runs and number of buses for a single route. In this way, the derived headways can be analyzed within an acceptable range while considering the possible changes incurred indirectly to the fleet size. The integration between resource saving and frequency determination procedures allows the scheduler's performance to be improved.
Bus frequency determination using passenger count data
Ceder, Avishai (author)
Transportation Research Part A: General ; 18 ; 439-453
1983-12-05
15 pages
Article (Journal)
Electronic Resource
English
Grouped zero-inflated count data models of coital frequency
Online Contents | 2000
|Frequency of Change Orders in Highway Construction Using Alternate Count-Data Modeling Methods
British Library Online Contents | 2010
|