A platform for research: civil engineering, architecture and urbanism
Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm
Abstract There are two primary collapse scenarios for single-layer latticed shells subjected to severe earthquake action: dynamic instability and strength failure. Of these, dynamic instability is the collapse scenario that must be avoided. First, taking the minimization of the standard deviation of the well-formedness as the optimization objective and the member sections as the optimization variables, an optimization model representing collapse scenarios for single-layer spherical shells is established. This optimization model also accounts for the displacement and stress constraints. Second, a genetic simulated annealing algorithm (GASA) is proposed by combining a genetic algorithm (GA) and a simulated annealing algorithm (SA). Finally, partial and overall optimizations are performed for a single-layer spherical shell that collapses due to instability under earthquake action. The results show that the optimized structure is subject to ideal strength failure under earthquake action with clear warning signs prior to collapse. In addition, the GASA performs better than the GA for optimization. Therefore, it is concluded that the optimization model and method presented in this paper can be used to perform collapse scenario optimization for single-layer spherical shells subjected to earthquake action.
Highlights We established an optimization model representing the collapse scenario of domes. GASA is proposed by combining GA and SA. We take a partial optimization and an overall optimization of a dome. The model can be used to perform the collapse scenario optimization of shells.
Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm
Abstract There are two primary collapse scenarios for single-layer latticed shells subjected to severe earthquake action: dynamic instability and strength failure. Of these, dynamic instability is the collapse scenario that must be avoided. First, taking the minimization of the standard deviation of the well-formedness as the optimization objective and the member sections as the optimization variables, an optimization model representing collapse scenarios for single-layer spherical shells is established. This optimization model also accounts for the displacement and stress constraints. Second, a genetic simulated annealing algorithm (GASA) is proposed by combining a genetic algorithm (GA) and a simulated annealing algorithm (SA). Finally, partial and overall optimizations are performed for a single-layer spherical shell that collapses due to instability under earthquake action. The results show that the optimized structure is subject to ideal strength failure under earthquake action with clear warning signs prior to collapse. In addition, the GASA performs better than the GA for optimization. Therefore, it is concluded that the optimization model and method presented in this paper can be used to perform collapse scenario optimization for single-layer spherical shells subjected to earthquake action.
Highlights We established an optimization model representing the collapse scenario of domes. GASA is proposed by combining GA and SA. We take a partial optimization and an overall optimization of a dome. The model can be used to perform the collapse scenario optimization of shells.
Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm
Liu, Wenzheng (author) / Ye, Jihong (author)
Journal of Constructional Steel Research ; 97 ; 59-68
2014-01-21
10 pages
Article (Journal)
Electronic Resource
English
Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm
Online Contents | 2014
|DYNAMIC COLLAPSE OF RETICULATED DOMES UNDER EARTHQUAKE MOTIONS
British Library Conference Proceedings | 1997
|Combination of DEM/FEM for Progressive Collapse Simulation of Domes Under Earthquake Action
Springer Verlag | 2018
|Combination of DEM/FEM for Progressive Collapse Simulation of Domes Under Earthquake Action
Online Contents | 2018
|Simulated Annealing-Genetic Algorithm for Transit Network Optimization
British Library Online Contents | 2006
|