A platform for research: civil engineering, architecture and urbanism
Evaluation of a detailed model of secondary organic aerosol formation from α-pinene against dark ozonolysis experiments
AbstractBOREAM, a detailed model for the gas-phase oxidation of α-pinene and its subsequent formation of Secondary Organic Aerosol (SOA), is tested against a large set of SOA yield measurements obtained in dark ozonolysis experiments. For the majority of experiments, modelled SOA yields are found to agree with measured yields to within a factor 2. However, the comparisons point to a general underestimation of modelled SOA yields at high temperatures (above 30 °C), reaching an order of magnitude or more in the worst cases, whereas modelled SOA yields are often overestimated at lower temperature (by a factor of about 2). Comparisons of results obtained using four different vapour pressure prediction methods indicate a strong sensitivity to the choice of the method, although the overestimated temperature dependence of the yields is found in all cases. Accounting for non-ideality of the aerosol mixture (based on an adapted UNIFAC method) has significant effects, especially at low yields. Our simulations show that the formation of oligomers through the gas-phase reactions of Stabilised Criegee Intermediates (SCI) with other molecular organic products could increase the SOA yield significantly only at very low relative humidity (below 1%). Further tests show that the agreement between model and measurements is improved when the ozonolysis mechanism includes additional production of non-volatile compounds.
Evaluation of a detailed model of secondary organic aerosol formation from α-pinene against dark ozonolysis experiments
AbstractBOREAM, a detailed model for the gas-phase oxidation of α-pinene and its subsequent formation of Secondary Organic Aerosol (SOA), is tested against a large set of SOA yield measurements obtained in dark ozonolysis experiments. For the majority of experiments, modelled SOA yields are found to agree with measured yields to within a factor 2. However, the comparisons point to a general underestimation of modelled SOA yields at high temperatures (above 30 °C), reaching an order of magnitude or more in the worst cases, whereas modelled SOA yields are often overestimated at lower temperature (by a factor of about 2). Comparisons of results obtained using four different vapour pressure prediction methods indicate a strong sensitivity to the choice of the method, although the overestimated temperature dependence of the yields is found in all cases. Accounting for non-ideality of the aerosol mixture (based on an adapted UNIFAC method) has significant effects, especially at low yields. Our simulations show that the formation of oligomers through the gas-phase reactions of Stabilised Criegee Intermediates (SCI) with other molecular organic products could increase the SOA yield significantly only at very low relative humidity (below 1%). Further tests show that the agreement between model and measurements is improved when the ozonolysis mechanism includes additional production of non-volatile compounds.
Evaluation of a detailed model of secondary organic aerosol formation from α-pinene against dark ozonolysis experiments
Ceulemans, Karl (author) / Compernolle, Steven (author) / Peeters, Jozef (author) / Müller, Jean-François (author)
Atmospheric Environment ; 44 ; 5434-5442
2010-05-03
9 pages
Article (Journal)
Electronic Resource
English
Secondary organic aerosol from &agr;-pinene ozonolysis in dynamic chamber system
Online Contents | 2009
|Secondary organic aerosol from α‐pinene ozonolysis in dynamic chamber system
Wiley | 2009
|Aging of secondary organic aerosol from α-pinene ozonolysis: Roles of hydroxyl and nitrate radicals
Taylor & Francis Verlag | 2012
|