A platform for research: civil engineering, architecture and urbanism
Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi'an, China
Abstract Average PM2.5 concentrations of ∼250 μg m−3 and peak concentrations of ∼500 μg m−3 were observed in Xi'an, the largest city in Northwest China during an extreme event in January 2013. The source-oriented versions of the Community Multi-scale Air Quality (CMAQ) model with anthropogenic emissions from Emissions Database for Global Atmospheric Research (EDGAR) were used to study the source contributions of six different source categories including energy production, industries, transportation, residential activities, “other” (agriculture, biomass, waste burning, and biogenic sources), and windblown dust to primary and secondary inorganic PM2.5 (nitrate and sulfate) during this episode. The model generally captured the variation and magnitude of PM2.5 concentrations at monitoring sites. The monthly average concentration of the predicted PM2.5 in Xi'an was >200 μg m−3, comparing favorably with the measurement of ∼250 μg m−3. Predicted concentrations of elemental carbon (EC), organic aerosol (OA), sulfate, nitrate, and ammonium were 6, 35, 18, 22, and 12 μg m−3, respectively. Chemically unresolved PM2.5 components (PM2.5 Other) were ∼80 μg m−3. Industries and residential activities dominated EC, organic carbon (OC) and PM2.5 Other, contributing 85%, 95%, and 83%, respectively. Energy production (mainly coal combustion) was the dominating source for secondary nitrate, contributing 46%. Other local and upwind sources were also important, contributing 43% and 11% of total nitrate, respectively. Primary sulfate was ∼10 μg m−3 in vicinity surrounding point sources. Secondary sulfate from upwind sources was also important with concentrations of ∼4–5 μg m−3. Secondary sulfate formed by SO2 emitted from local sources was dominated by energy production. Based on the contributions of different sources to primary components and secondary nitrate and sulfate, the contributions of different sources to PM2.5 total mass in Xi'an during the extremely polluted months are: energy 5%, industries 58%, transportation 2%, residential activities 16%, dust 4%, and other (including other components, inexplicit sources, and upwind sources) 15%.
Highlights An extremely high PM2.5 concentrations episode in January 2013 was simulated. Source contributions to primary/secondary inorganic PM in Xi'an were quantified. Industrial and residential activities are the dominating sources for primary species. Energy production industries are the major source for secondary nitrate/sulfate.
Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi'an, China
Abstract Average PM2.5 concentrations of ∼250 μg m−3 and peak concentrations of ∼500 μg m−3 were observed in Xi'an, the largest city in Northwest China during an extreme event in January 2013. The source-oriented versions of the Community Multi-scale Air Quality (CMAQ) model with anthropogenic emissions from Emissions Database for Global Atmospheric Research (EDGAR) were used to study the source contributions of six different source categories including energy production, industries, transportation, residential activities, “other” (agriculture, biomass, waste burning, and biogenic sources), and windblown dust to primary and secondary inorganic PM2.5 (nitrate and sulfate) during this episode. The model generally captured the variation and magnitude of PM2.5 concentrations at monitoring sites. The monthly average concentration of the predicted PM2.5 in Xi'an was >200 μg m−3, comparing favorably with the measurement of ∼250 μg m−3. Predicted concentrations of elemental carbon (EC), organic aerosol (OA), sulfate, nitrate, and ammonium were 6, 35, 18, 22, and 12 μg m−3, respectively. Chemically unresolved PM2.5 components (PM2.5 Other) were ∼80 μg m−3. Industries and residential activities dominated EC, organic carbon (OC) and PM2.5 Other, contributing 85%, 95%, and 83%, respectively. Energy production (mainly coal combustion) was the dominating source for secondary nitrate, contributing 46%. Other local and upwind sources were also important, contributing 43% and 11% of total nitrate, respectively. Primary sulfate was ∼10 μg m−3 in vicinity surrounding point sources. Secondary sulfate from upwind sources was also important with concentrations of ∼4–5 μg m−3. Secondary sulfate formed by SO2 emitted from local sources was dominated by energy production. Based on the contributions of different sources to primary components and secondary nitrate and sulfate, the contributions of different sources to PM2.5 total mass in Xi'an during the extremely polluted months are: energy 5%, industries 58%, transportation 2%, residential activities 16%, dust 4%, and other (including other components, inexplicit sources, and upwind sources) 15%.
Highlights An extremely high PM2.5 concentrations episode in January 2013 was simulated. Source contributions to primary/secondary inorganic PM in Xi'an were quantified. Industrial and residential activities are the dominating sources for primary species. Energy production industries are the major source for secondary nitrate/sulfate.
Source contributions to primary and secondary inorganic particulate matter during a severe wintertime PM2.5 pollution episode in Xi'an, China
Wang, Dexiang (author) / Hu, Jianlin (author) / Xu, Yong (author) / Lv, Di (author) / Xie, Xiaoyang (author) / Kleeman, Michael (author) / Xing, Jia (author) / Zhang, Hongliang (author) / Ying, Qi (author)
Atmospheric Environment ; 97 ; 182-194
2014-08-11
13 pages
Article (Journal)
Electronic Resource
English
Source contributions and regional transport of primary particulate matter in China
Online Contents | 2015
|Modeling wintertime particulate matter formation in central California
Elsevier | 2008
|