A platform for research: civil engineering, architecture and urbanism
Evaluation of methods for the physical characterization of the fine particle emissions from two residential wood combustion appliances
AbstractThe fine particle emissions from a U. S. certified non-catalytic wood stove and a zero-clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission testing was performed using both time-integrated and continuous instrumentation for total particle mass, particle number, particle size distribution, and fixed combustion gases using an atmospheric wind tunnel, full-flow laboratory dilution tunnel, and dilution stack sampler with a comparison made between the three dilution systems and two sampling filter types. The total mass emission factors (EFs) for all dilution systems and filter media are extremely variable ranging from <1 to ∼55 g kg−1 of dry wood depending on the combination of appliance type, wood species and moisture content, filter medium, and dilution system. For Teflon filter sampling of stove emissions in the wind tunnel, the total mass EFs varied from ∼2 to 8 g kg−1 of dry fuel depending on wood type whereas the equivalent fireplace emissions burning wet oak averaged 11 g kg−1. A substantial number of ultrafine particles in the accumulation size range were also observed during all tests as determined by an Electrical Low Pressure Impactor (ELPI) and Scanning Mobility Particle Sizer. The PM-2.5 (particles ≤2.5 μm in aerodynamic diameter) fractions determined from the ELPI electrometer data ranged from 93 to 98% (mass) depending on appliance type as reported previously by Hays et al. (Aerosol Science, 34, 1061, 2003).
Evaluation of methods for the physical characterization of the fine particle emissions from two residential wood combustion appliances
AbstractThe fine particle emissions from a U. S. certified non-catalytic wood stove and a zero-clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission testing was performed using both time-integrated and continuous instrumentation for total particle mass, particle number, particle size distribution, and fixed combustion gases using an atmospheric wind tunnel, full-flow laboratory dilution tunnel, and dilution stack sampler with a comparison made between the three dilution systems and two sampling filter types. The total mass emission factors (EFs) for all dilution systems and filter media are extremely variable ranging from <1 to ∼55 g kg−1 of dry wood depending on the combination of appliance type, wood species and moisture content, filter medium, and dilution system. For Teflon filter sampling of stove emissions in the wind tunnel, the total mass EFs varied from ∼2 to 8 g kg−1 of dry fuel depending on wood type whereas the equivalent fireplace emissions burning wet oak averaged 11 g kg−1. A substantial number of ultrafine particles in the accumulation size range were also observed during all tests as determined by an Electrical Low Pressure Impactor (ELPI) and Scanning Mobility Particle Sizer. The PM-2.5 (particles ≤2.5 μm in aerodynamic diameter) fractions determined from the ELPI electrometer data ranged from 93 to 98% (mass) depending on appliance type as reported previously by Hays et al. (Aerosol Science, 34, 1061, 2003).
Evaluation of methods for the physical characterization of the fine particle emissions from two residential wood combustion appliances
Kinsey, John S. (author) / Kariher, Peter H. (author) / Dong, Yuanji (author)
Atmospheric Environment ; 43 ; 4959-4967
2009-07-07
9 pages
Article (Journal)
Electronic Resource
English
Taylor & Francis Verlag | 2022
|BASE | 2012
|