A platform for research: civil engineering, architecture and urbanism
Prediction of 3D contact force chains using artificial neural networks
Abstract Contact force chains (CFCs) in the heterogeneous granular materials are often considered to be structured physical systems that play a key role in their mechanical properties such as stiffness, strength, stability and flowability. In this context, quantitatively estimating the evolution of CFCs in a quasi-statically sheared granular system is essential for advancing our understanding of the mechanics of granular materials. In this paper, based on discrete element method (DEM) simulation data, an artificial neural network (ANN) is developed and applied to predict the anisotropy of the CFCs in two types of idealized granular materials with different initial relative densities undergoing triaxial shearing. Five features including particle size, coordination number and particle displacement (i.e., x-, y- and z-components of the particle displacement) at the particle-scale and the meso-scale each are used to train and test the established ANN model. The results of model prediction show that the 3D orientational distributions of the CFCs from the ANN predictions match very well the DEM simulation results during the whole shearing progress. It is found that for both dense and loose samples, the combined set of particle-scale and meso-scale features have a dominating influence on the CFC evolutions but the ANN model performs better in the CFCs estimation at the strain increment of 0–7% than at the strain increment of 7%–14%. The outcome of this study shows that machine learning is a promising tool for studying the complex mechanical behavior of granular materials.
Highlights Constructing a multi-layer feedforward ANN model based on a detailed set of 3D DEM simulation data. Estimating the anisotropy of CFC in a quasi-statically sheared granular system with a high accuracy. Demonstrating the effect of shear band on the ANN model performance. Investigating the initial relative density on ANN predictions.
Prediction of 3D contact force chains using artificial neural networks
Abstract Contact force chains (CFCs) in the heterogeneous granular materials are often considered to be structured physical systems that play a key role in their mechanical properties such as stiffness, strength, stability and flowability. In this context, quantitatively estimating the evolution of CFCs in a quasi-statically sheared granular system is essential for advancing our understanding of the mechanics of granular materials. In this paper, based on discrete element method (DEM) simulation data, an artificial neural network (ANN) is developed and applied to predict the anisotropy of the CFCs in two types of idealized granular materials with different initial relative densities undergoing triaxial shearing. Five features including particle size, coordination number and particle displacement (i.e., x-, y- and z-components of the particle displacement) at the particle-scale and the meso-scale each are used to train and test the established ANN model. The results of model prediction show that the 3D orientational distributions of the CFCs from the ANN predictions match very well the DEM simulation results during the whole shearing progress. It is found that for both dense and loose samples, the combined set of particle-scale and meso-scale features have a dominating influence on the CFC evolutions but the ANN model performs better in the CFCs estimation at the strain increment of 0–7% than at the strain increment of 7%–14%. The outcome of this study shows that machine learning is a promising tool for studying the complex mechanical behavior of granular materials.
Highlights Constructing a multi-layer feedforward ANN model based on a detailed set of 3D DEM simulation data. Estimating the anisotropy of CFC in a quasi-statically sheared granular system with a high accuracy. Demonstrating the effect of shear band on the ANN model performance. Investigating the initial relative density on ANN predictions.
Prediction of 3D contact force chains using artificial neural networks
Wu, Mengmeng (author) / Wang, Jianfeng (author)
Engineering Geology ; 296
2021-10-31
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2018
|British Library Online Contents | 2018
|Prediction of Runoff Using Artificial Neural Networks
HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2010
|Bank Collapse Prediction Using BP Artificial Neural Networks
British Library Conference Proceedings | 2013
|Roughness Level Probability Prediction Using Artificial Neural Networks
British Library Conference Proceedings | 1997
|