A platform for research: civil engineering, architecture and urbanism
Centrifuge model tests on the deformation behavior of geosynthetic-encased stone column supported embankment under undrained condition
Abstract A series of centrifuge model tests were carried out to investigate the performance of geosynthetic-encased stone columns (GESCs) supported embankment under undrained condition. The influence of stiffness of encasement, basal reinforcement and embankment loading on the deformation behavior of GESCs were also assessed. The centrifuge test results reveal that under undrained condition, compared to ordinary stone column (OSC) supported embankment, the settlement of column has reduced by 50% and 34% when columns were encased with high and low stiffness geogrids respectively. Moreover, under identical embankment loading condition, the stress concentration ratio has increased significantly upon inclusion of basal reinforcement in the GESCs supported embankment. In case of OSCs supported embankment, columns experiences bulging in the top portion, inward bending in the central portion and a noticeable shear at the bottom portion. However, when columns were encased with geogrid layer, bulging in the top portion was significantly reduced but the inward bending of columns were noticed. With the inclusion of basal reinforcement, bending curvature of columns increases thereby inducing higher settlement in columns and relatively lesser settlement in surrounding soil. The differential settlement between the encased column and the surrounding soil under embankment loading has been considerably reduced with the inclusion of basal reinforcement.
Centrifuge model tests on the deformation behavior of geosynthetic-encased stone column supported embankment under undrained condition
Abstract A series of centrifuge model tests were carried out to investigate the performance of geosynthetic-encased stone columns (GESCs) supported embankment under undrained condition. The influence of stiffness of encasement, basal reinforcement and embankment loading on the deformation behavior of GESCs were also assessed. The centrifuge test results reveal that under undrained condition, compared to ordinary stone column (OSC) supported embankment, the settlement of column has reduced by 50% and 34% when columns were encased with high and low stiffness geogrids respectively. Moreover, under identical embankment loading condition, the stress concentration ratio has increased significantly upon inclusion of basal reinforcement in the GESCs supported embankment. In case of OSCs supported embankment, columns experiences bulging in the top portion, inward bending in the central portion and a noticeable shear at the bottom portion. However, when columns were encased with geogrid layer, bulging in the top portion was significantly reduced but the inward bending of columns were noticed. With the inclusion of basal reinforcement, bending curvature of columns increases thereby inducing higher settlement in columns and relatively lesser settlement in surrounding soil. The differential settlement between the encased column and the surrounding soil under embankment loading has been considerably reduced with the inclusion of basal reinforcement.
Centrifuge model tests on the deformation behavior of geosynthetic-encased stone column supported embankment under undrained condition
Li, Liang-Yong (author) / Rajesh, Sathiyamoorthy (author) / Chen, Jian-Feng (author)
Geotextiles and Geomembranes ; 49 ; 550-563
2020-01-01
14 pages
Article (Journal)
Electronic Resource
English