A platform for research: civil engineering, architecture and urbanism
Optimizing the scheduling of crew deployments in repetitive construction projects under uncertainty
This paper presents the development of a novel model for optimizing the scheduling of crew deployments in repetitive construction projects while considering uncertainty in crew production rates.
The model computations are performed in two modules: (1) simulation module that integrates Monte Carlo simulation and a resource-driven scheduling technique to calculate the earliest crew deployment dates for all activities that fully comply with crew work continuity while considering uncertainty; and (2) optimization module that utilizes genetic algorithms to search for and identify optimal crew deployment plans that provide optimal trade-offs between project duration and crew deployment plan cost.
A real-life example of street renovation is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing the stochastic scheduling of crew deployments in repetitive construction projects.
The original contribution of this research is creating a novel multiobjective stochastic scheduling optimization model for both serial and nonserial repetitive construction projects that is capable of identifying an optimal crew deployment plan that simultaneously minimizes project duration and crew deployment cost.
Optimizing the scheduling of crew deployments in repetitive construction projects under uncertainty
This paper presents the development of a novel model for optimizing the scheduling of crew deployments in repetitive construction projects while considering uncertainty in crew production rates.
The model computations are performed in two modules: (1) simulation module that integrates Monte Carlo simulation and a resource-driven scheduling technique to calculate the earliest crew deployment dates for all activities that fully comply with crew work continuity while considering uncertainty; and (2) optimization module that utilizes genetic algorithms to search for and identify optimal crew deployment plans that provide optimal trade-offs between project duration and crew deployment plan cost.
A real-life example of street renovation is analyzed to illustrate the use of the model and demonstrate its capabilities in optimizing the stochastic scheduling of crew deployments in repetitive construction projects.
The original contribution of this research is creating a novel multiobjective stochastic scheduling optimization model for both serial and nonserial repetitive construction projects that is capable of identifying an optimal crew deployment plan that simultaneously minimizes project duration and crew deployment cost.
Optimizing the scheduling of crew deployments in repetitive construction projects under uncertainty
Optimizing the scheduling of crew deployments
Hassan, Abbas (author) / El-Rayes, Khaled (author) / Attalla, Mohamed (author)
Engineering, Construction and Architectural Management ; 28 ; 1615-1634
2020-08-28
20 pages
Article (Journal)
Electronic Resource
English
Optimized crew selection for scheduling of repetitive projects
Emerald Group Publishing | 2020
|Optimized scheduling and buffering of repetitive construction projects under uncertainty
Online Contents | 2016
|Minimizing duration and crew work interruptions of repetitive construction projects
British Library Online Contents | 2018
|Optimizing Resource Utilization for Repetitive Construction Projects
British Library Online Contents | 2001
|