A platform for research: civil engineering, architecture and urbanism
Parametric study on load ratio effect on the flexural bending behaviour of axially-restrained HSS steel beams subjected to fire
In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and span length. The purpose of this study is to investigate the structural fire behaviour of axially restrained steel beams under different beam’s load ratios, taking into consideration the effect of the beam’s end connections configuration.
A three-dimensional finite element (FE) computer model has been developed to simulate the structural fire behaviour of axially restrained steel beams and their end connections. After successfully validating the developed model against the outcomes of the available large-size fire resistance experiments, the FE model has been used in a parametric study to investigate the beam’s load ratio effect on the behaviour of the axially restrained steel beams and their end connections.
The parametric study showed that increasing the beam loading level significantly increased the beam deflections at elevated temperatures; where, increasing the beam’s load ratio from 0.5 to 0.9 reduced the beam fire resistance by about 100 s. In contrast, decreasing the beam’s load ratio from 0.5 to 0.3 allowed the beam to easily achieve a 30-min fire resistance rating with no fire protection applied.
Experimental parametric studies are difficult to control in a laboratory setting and are also expensive and time consuming. Therefore, the reasonable accuracy of the validated FE model in reproducing the experimental fire behaviour of steel beams and their end connections makes it a very useful tool for both numerical and analytical studies.
Parametric study on load ratio effect on the flexural bending behaviour of axially-restrained HSS steel beams subjected to fire
In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and span length. The purpose of this study is to investigate the structural fire behaviour of axially restrained steel beams under different beam’s load ratios, taking into consideration the effect of the beam’s end connections configuration.
A three-dimensional finite element (FE) computer model has been developed to simulate the structural fire behaviour of axially restrained steel beams and their end connections. After successfully validating the developed model against the outcomes of the available large-size fire resistance experiments, the FE model has been used in a parametric study to investigate the beam’s load ratio effect on the behaviour of the axially restrained steel beams and their end connections.
The parametric study showed that increasing the beam loading level significantly increased the beam deflections at elevated temperatures; where, increasing the beam’s load ratio from 0.5 to 0.9 reduced the beam fire resistance by about 100 s. In contrast, decreasing the beam’s load ratio from 0.5 to 0.3 allowed the beam to easily achieve a 30-min fire resistance rating with no fire protection applied.
Experimental parametric studies are difficult to control in a laboratory setting and are also expensive and time consuming. Therefore, the reasonable accuracy of the validated FE model in reproducing the experimental fire behaviour of steel beams and their end connections makes it a very useful tool for both numerical and analytical studies.
Parametric study on load ratio effect on the flexural bending behaviour of axially-restrained HSS steel beams subjected to fire
Salem, Osama (Sam) (author)
Journal of Structural Fire Engineering ; 9 ; 342-360
2018-03-29
19 pages
Article (Journal)
Electronic Resource
English
Flexural behaviour of axially and rotationally restrained cold-formed steel beams subjected to fire
Online Contents | 2016
|Experimental investigation of behaviour of axially restrained steel beams in fire
Online Contents | 2002
|Behaviour of Axially Restrained Steel Columns during Fire
British Library Conference Proceedings | 1997
|