A platform for research: civil engineering, architecture and urbanism
Comparing optimization modeling approaches for the multi-mode resource-constrained multi-project scheduling problem
Construction firms keep minimal resources to maintain productive working capital. Hence, resources are constrained and have to be shared among multiple projects in an organization. Optimal allocation of resources is a key challenge in such situations. Several approaches and heuristics have been proposed for this task. The purpose of this paper is to compare two approaches for multi-mode resource-constrained project scheduling in a multi-project environment. These are the single-project approach (portfolio optimization) and the multi-project approach (each project is optimized individually, and then heuristic rules are used to satisfy the portfolio constraint).
A direct search algorithm called Probabilistic Global Search Lausanne is used for schedule optimization. Multiple solutions are generated that achieve different trade-offs among the three criteria, namely, time, cost and quality. Good compromise solutions among these are identified using a multi-criteria decision making method, Relaxed Restricted Pareto Version 4. The solutions obtained using the single-project and multi-project approaches are compared in order to evaluate their advantages and disadvantages. Data from two sources are used for the evaluation: modified multi-mode resource-constrained project scheduling problem data sets from the project scheduling problem library (PSPLIB) and three real case study projects in India.
Computational results prove the superiority of the single-project approach over heuristic priority rules (multi-project approach). The single-project approach identifies better solutions compared to the multi-project approach. However, the multi-project approach involves fewer optimization variables and is faster in execution.
It is feasible to adopt the single-project approach in practice; realistic resource constraints can be incorporated in a multi-objective optimization formulation; and good compromise solutions that achieve acceptable trade-offs among the conflicting objectives can be identified.
An integer programming model was developed in this research to optimize the multiple objectives in a multi-project environment considering explicit resource constraints and maximum daily costs constraints. This model was used to compare the performance of the two multi-project environment approaches. Unlike existing work in this area, the model used to predict the quality of activity execution modes is based on data collected from real construction projects.
Comparing optimization modeling approaches for the multi-mode resource-constrained multi-project scheduling problem
Construction firms keep minimal resources to maintain productive working capital. Hence, resources are constrained and have to be shared among multiple projects in an organization. Optimal allocation of resources is a key challenge in such situations. Several approaches and heuristics have been proposed for this task. The purpose of this paper is to compare two approaches for multi-mode resource-constrained project scheduling in a multi-project environment. These are the single-project approach (portfolio optimization) and the multi-project approach (each project is optimized individually, and then heuristic rules are used to satisfy the portfolio constraint).
A direct search algorithm called Probabilistic Global Search Lausanne is used for schedule optimization. Multiple solutions are generated that achieve different trade-offs among the three criteria, namely, time, cost and quality. Good compromise solutions among these are identified using a multi-criteria decision making method, Relaxed Restricted Pareto Version 4. The solutions obtained using the single-project and multi-project approaches are compared in order to evaluate their advantages and disadvantages. Data from two sources are used for the evaluation: modified multi-mode resource-constrained project scheduling problem data sets from the project scheduling problem library (PSPLIB) and three real case study projects in India.
Computational results prove the superiority of the single-project approach over heuristic priority rules (multi-project approach). The single-project approach identifies better solutions compared to the multi-project approach. However, the multi-project approach involves fewer optimization variables and is faster in execution.
It is feasible to adopt the single-project approach in practice; realistic resource constraints can be incorporated in a multi-objective optimization formulation; and good compromise solutions that achieve acceptable trade-offs among the conflicting objectives can be identified.
An integer programming model was developed in this research to optimize the multiple objectives in a multi-project environment considering explicit resource constraints and maximum daily costs constraints. This model was used to compare the performance of the two multi-project environment approaches. Unlike existing work in this area, the model used to predict the quality of activity execution modes is based on data collected from real construction projects.
Comparing optimization modeling approaches for the multi-mode resource-constrained multi-project scheduling problem
Optimization modeling approaches for the MRCMPSP
Kannimuthu, Marimuthu (author) / Raphael, Benny (author) / Ekambaram, Palaneeswaran (author) / Kuppuswamy, Ananthanarayanan (author)
Engineering, Construction and Architectural Management ; 27 ; 893-916
2019-11-11
23 pages
Article (Journal)
Electronic Resource
English
British Library Online Contents | 2013
|A New Approach for Resource-Constrained Multi-Project Scheduling
British Library Conference Proceedings | 2010
|