A platform for research: civil engineering, architecture and urbanism
Multiphase fluorescent ceramic and preparation method thereof
The invention relates to a multiphase fluorescent ceramic and a preparation method thereof. The multiphase fluorescent ceramic comprises a high-thermal-conductivity dielectric ceramic matrix and fluorescent ceramic main bodies which are distributed in the high-thermal-conductivity dielectric ceramic matrix and are periodically arranged; the shortest distance L between the adjacent fluorescent ceramic main bodies is 200-1000 microns, and the volume fraction delta of the high-thermal-conductivity dielectric ceramic matrix in the multiphase fluorescent ceramic is 5-60%; the fluorescent ceramic main body is rare earth doped transparent ceramic; and the material of the high-thermal-conductivity dielectric ceramic matrix is selected from at least one of Al2O3, AlN, BeO, Sc2O3, Si3N4, BN, SiC andMgO.
本发明涉及一种复相荧光陶瓷及其制备方法,所述复相荧光陶瓷包括:高导热介质陶瓷基体,以及分布在高导热介质陶瓷基体中的呈周期排布的荧光陶瓷主体;相邻荧光陶瓷主体之间的最短距离L为200~1000μm,高导热介质陶瓷基体占复相荧光陶瓷的体积分数δ为5~60%;所述荧光陶瓷主体为稀土掺杂透明陶瓷;所述高导热介质陶瓷基体的材料选自AlO、AlN、BeO、ScO、SiN、BN、SiC和MgO中的至少一种。
Multiphase fluorescent ceramic and preparation method thereof
The invention relates to a multiphase fluorescent ceramic and a preparation method thereof. The multiphase fluorescent ceramic comprises a high-thermal-conductivity dielectric ceramic matrix and fluorescent ceramic main bodies which are distributed in the high-thermal-conductivity dielectric ceramic matrix and are periodically arranged; the shortest distance L between the adjacent fluorescent ceramic main bodies is 200-1000 microns, and the volume fraction delta of the high-thermal-conductivity dielectric ceramic matrix in the multiphase fluorescent ceramic is 5-60%; the fluorescent ceramic main body is rare earth doped transparent ceramic; and the material of the high-thermal-conductivity dielectric ceramic matrix is selected from at least one of Al2O3, AlN, BeO, Sc2O3, Si3N4, BN, SiC andMgO.
本发明涉及一种复相荧光陶瓷及其制备方法,所述复相荧光陶瓷包括:高导热介质陶瓷基体,以及分布在高导热介质陶瓷基体中的呈周期排布的荧光陶瓷主体;相邻荧光陶瓷主体之间的最短距离L为200~1000μm,高导热介质陶瓷基体占复相荧光陶瓷的体积分数δ为5~60%;所述荧光陶瓷主体为稀土掺杂透明陶瓷;所述高导热介质陶瓷基体的材料选自AlO、AlN、BeO、ScO、SiN、BN、SiC和MgO中的至少一种。
Multiphase fluorescent ceramic and preparation method thereof
一种复相荧光陶瓷及其制备方法
HU SONG (author) / CHEN HAN (author) / XUE ZHENHAI (author) / WANG ZHENGJUAN (author) / ZHANG YUNLI (author) / LI HONGSHU (author) / ZHOU GUOHONG (author) / WANG SHIWEI (author)
2020-07-07
Patent
Electronic Resource
Chinese
IPC:
C04B
Kalk
,
LIME
/
B33Y
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
,
Additive (generative) Fertigung, d. h. die Herstellung von dreidimensionalen [3D] Bauteilen durch additive Abscheidung, additive Agglomeration oder additive Schichtung, z. B. durch 3D- Drucken, Stereolithografie oder selektives Lasersintern
/
C09K
Materialien für Anwendungen, soweit nicht anderweitig vorgesehen
,
MATERIALS FOR APPLICATIONS NOT OTHERWISE PROVIDED FOR
MULTIPHASE FLUORESCENT CERAMIC AND PREPARATION METHOD THEREOF
European Patent Office | 2022
|Multiphase fluorescent ceramic and preparation method thereof
European Patent Office | 2020
|Multiphase fluorescent ceramic and preparation method thereof
European Patent Office | 2024
|Multiphase fluorescent ceramic material and preparation method thereof
European Patent Office | 2020
|European Patent Office | 2024
|