A platform for research: civil engineering, architecture and urbanism
Fabricated steel-ultrahigh toughness concrete combined bridge deck
The invention discloses a fabricated steel-ultrahigh-toughness concrete combined bridge deck which comprises hot-rolled H-shaped steel, round steel bars, high-strength bolts and ultrahigh-toughness concrete. Bolt holes are formed in flanges of the hot-rolled H-shaped steel, and transverse round steel bars are welded to flange plates on the flanges, so that the section steel prefabricated part units are formed. The high-strength bolts penetrate through the bolt holes and are connected with the adjacent hot-rolled H-shaped steel to form a bridge deck steel framework. The ultrahigh-toughness concrete is poured on the bridge deck steel framework to play a role in protecting the bridge deck steel framework. In the combined bridge deck slab system, the ultra-high toughness concrete can ensure that micro cracks of 100 microns or below are not generated or only generated, and the toughness and durability of the structure are improved; the bridge deck steel framework is formed by connecting factory prefabricated parts through the high-strength bolts, the prefabrication and assembly degree is high, and the construction precision and quality are guaranteed; and no stud needs to be arranged, so that the construction complexity is reduced, and the structural fatigue performance is ensured.
本发明公开了一种装配式钢‑超高韧性混凝土组合桥面板,包括热轧H型钢、圆钢棒、高强螺栓、超高韧性混凝土。热轧H型钢翼缘上开设螺栓孔,并在其上侧翼缘板上焊接横向圆钢棒,成为型钢预制件单元。热轧H型钢沿桥面横向连续并排放置,高强螺栓穿过螺栓孔并连接相邻热轧H型钢形成桥面钢骨架。超高韧性混凝土浇筑在桥面钢骨架上,起到保护桥面钢骨架的作用。本发明组合桥面板体系中,超高韧性混凝土可保证不产生或仅产生100微米以下的微小裂缝,提升结构的韧性和耐久性;桥面钢骨架由工厂预制件通过高强螺栓连接而成,预制装配化程度高,保障施工精度和质量;无需布置栓钉,降低施工复杂度的同时保证结构疲劳性能。
Fabricated steel-ultrahigh toughness concrete combined bridge deck
The invention discloses a fabricated steel-ultrahigh-toughness concrete combined bridge deck which comprises hot-rolled H-shaped steel, round steel bars, high-strength bolts and ultrahigh-toughness concrete. Bolt holes are formed in flanges of the hot-rolled H-shaped steel, and transverse round steel bars are welded to flange plates on the flanges, so that the section steel prefabricated part units are formed. The high-strength bolts penetrate through the bolt holes and are connected with the adjacent hot-rolled H-shaped steel to form a bridge deck steel framework. The ultrahigh-toughness concrete is poured on the bridge deck steel framework to play a role in protecting the bridge deck steel framework. In the combined bridge deck slab system, the ultra-high toughness concrete can ensure that micro cracks of 100 microns or below are not generated or only generated, and the toughness and durability of the structure are improved; the bridge deck steel framework is formed by connecting factory prefabricated parts through the high-strength bolts, the prefabrication and assembly degree is high, and the construction precision and quality are guaranteed; and no stud needs to be arranged, so that the construction complexity is reduced, and the structural fatigue performance is ensured.
本发明公开了一种装配式钢‑超高韧性混凝土组合桥面板,包括热轧H型钢、圆钢棒、高强螺栓、超高韧性混凝土。热轧H型钢翼缘上开设螺栓孔,并在其上侧翼缘板上焊接横向圆钢棒,成为型钢预制件单元。热轧H型钢沿桥面横向连续并排放置,高强螺栓穿过螺栓孔并连接相邻热轧H型钢形成桥面钢骨架。超高韧性混凝土浇筑在桥面钢骨架上,起到保护桥面钢骨架的作用。本发明组合桥面板体系中,超高韧性混凝土可保证不产生或仅产生100微米以下的微小裂缝,提升结构的韧性和耐久性;桥面钢骨架由工厂预制件通过高强螺栓连接而成,预制装配化程度高,保障施工精度和质量;无需布置栓钉,降低施工复杂度的同时保证结构疲劳性能。
Fabricated steel-ultrahigh toughness concrete combined bridge deck
一种装配式钢-超高韧性混凝土组合桥面板
LI HUAIFENG (author) / XU ZHAO (author) / CHEN GUOHONG (author) / HE PAN (author) / XU SHILANG (author) / TONG JINGZHONG (author) / LI QINGHUA (author) / WANG GUOZHONG (author)
2021-06-01
Patent
Electronic Resource
Chinese
Profiled steel sheet-ultrahigh toughness concrete combined bridge deck
European Patent Office | 2021
|Steel-ultrahigh-toughness concrete combined bridge deck slab based on steel bar truss connection
European Patent Office | 2021
|Fabricated steel-concrete combined bridge deck structure
European Patent Office | 2022
|Fabricated welding-free steel-concrete combined bridge deck structure
European Patent Office | 2023
|