A platform for research: civil engineering, architecture and urbanism
Barium-aluminum-silicon system light-transmitting ceramic tile preparation method and light-transmitting ceramic tile
The invention provides a preparation method of a light-transmitting ceramic tile of a barium-aluminum-silicon system and the light-transmitting ceramic tile. The preparation method of the light-transmitting ceramic tile of the barium-aluminum-silicon system comprises the following steps: selecting a target raw material formula in a pre-constructed raw material formula table according to the specification of the light-transmitting ceramic tile to be prepared; preparing the light-transmitting ceramic tile according to the target raw material formula; wherein the raw material formula table comprises a plurality of raw material formulas, raw materials in each raw material formula comprise kaolin, barium carbonate, potassium feldspar, low-temperature frit, baryta feldspar and/or quartz, and the kaolin in each raw material formula accounts for different weight percentages. In the calcining process of the kaolin, the kaolin and barium carbonate form celsian with the refractive index extremely close to that of anorthite, and the celsian and potassium albite can form celsian with the refractive index closer to that of quartz at a high temperature, so that mullite does not exist in a ceramic green brick, and the light transmittance of the green body is further improved.
本发明提供了一种钡铝硅体系的透光陶瓷砖制备方法及透光陶瓷砖,所述钡铝硅体系的透光陶瓷砖制备方法包括:根据待制备的透光陶瓷砖的规格在预先构建的原料配方表中选择目标原料配方;按照所述目标原料配方制备透光陶瓷砖;其中,所述原料配方表中包括若干原料配方,各个原料配方中的原料均包括:高岭土、碳酸钡、钾长石、低温熔块、钡长石和/或石英,且各个原料配方中的高岭土所占的重量百分比均不相同。本发明中的高岭土在煅烧过程中,与碳酸钡形成与钙长石折射率极为接近的钡长石,而钡长石高温下又可与钾钠长石形成与石英折射率更为接近的钡冰长石,这样,陶瓷砖坯中不再存在莫来石,进而提高了坯体的透光率。
Barium-aluminum-silicon system light-transmitting ceramic tile preparation method and light-transmitting ceramic tile
The invention provides a preparation method of a light-transmitting ceramic tile of a barium-aluminum-silicon system and the light-transmitting ceramic tile. The preparation method of the light-transmitting ceramic tile of the barium-aluminum-silicon system comprises the following steps: selecting a target raw material formula in a pre-constructed raw material formula table according to the specification of the light-transmitting ceramic tile to be prepared; preparing the light-transmitting ceramic tile according to the target raw material formula; wherein the raw material formula table comprises a plurality of raw material formulas, raw materials in each raw material formula comprise kaolin, barium carbonate, potassium feldspar, low-temperature frit, baryta feldspar and/or quartz, and the kaolin in each raw material formula accounts for different weight percentages. In the calcining process of the kaolin, the kaolin and barium carbonate form celsian with the refractive index extremely close to that of anorthite, and the celsian and potassium albite can form celsian with the refractive index closer to that of quartz at a high temperature, so that mullite does not exist in a ceramic green brick, and the light transmittance of the green body is further improved.
本发明提供了一种钡铝硅体系的透光陶瓷砖制备方法及透光陶瓷砖,所述钡铝硅体系的透光陶瓷砖制备方法包括:根据待制备的透光陶瓷砖的规格在预先构建的原料配方表中选择目标原料配方;按照所述目标原料配方制备透光陶瓷砖;其中,所述原料配方表中包括若干原料配方,各个原料配方中的原料均包括:高岭土、碳酸钡、钾长石、低温熔块、钡长石和/或石英,且各个原料配方中的高岭土所占的重量百分比均不相同。本发明中的高岭土在煅烧过程中,与碳酸钡形成与钙长石折射率极为接近的钡长石,而钡长石高温下又可与钾钠长石形成与石英折射率更为接近的钡冰长石,这样,陶瓷砖坯中不再存在莫来石,进而提高了坯体的透光率。
Barium-aluminum-silicon system light-transmitting ceramic tile preparation method and light-transmitting ceramic tile
一种钡铝硅体系的透光陶瓷砖制备方法及透光陶瓷砖
SHEN RONGWEI (author) / WU HUA (author) / WANG YONGQIANG (author) / WANG AIFANG (author)
2024-12-27
Patent
Electronic Resource
Chinese
European Patent Office | 2024
|Full-body color-changing light-transmitting ceramic tile and preparation method thereof
European Patent Office | 2020
|Night-rose-imitating stone positioning light-transmitting ceramic tile and preparation process
European Patent Office | 2024
|Ultra-white light-transmitting jade ceramic tile and processing method thereof
European Patent Office | 2022
|