A platform for research: civil engineering, architecture and urbanism
CORDIERITE-INDIALITE-PSEUDOBROOKITE STRUCTURED CERAMIC BODIES, BATCH COMPOSITION MIXTURES, AND METHODS OF MANUFACTURING CERAMIC BODIES THEREFROM
A ceramic body exhibiting % P≥50%, df≤0.36, and a combined weight percentage of crystalline phases containing cordierite and indialite of at least 85 wt %, and up to 10 wt % of a crystalline pseudobrookite structured phase, such as armalcolite. The ceramic body contains, as expressed on an oxide basis, either: 1% wt % to 11% wt % titania and 89% wt % to 99% wt % MgO, Al2O3, and SiO2 that have relative weight ratios of MgO:Al2O3:SiO2 within the field defined by 15.6:34.0:50.4, 12.6:34.0:53.4, 13.9:30.7:55.4, and 16.9:30.7:52.4, or 2.5% to 11% titania and 89% wt % to 97.5% wt % MgO, Al2O3, and SiO2 that have relative weight ratios of MgO:Al2O3:SiO2 within the field defined by 15.6:34.0:50.4, 12.6:34.0:53.4, 12.0:35.7:52.3, and 15.0:35.7:49.3. Batch composition mixtures and methods of manufacturing ceramic bodies using the batch compositions are provided, as are other aspects.
CORDIERITE-INDIALITE-PSEUDOBROOKITE STRUCTURED CERAMIC BODIES, BATCH COMPOSITION MIXTURES, AND METHODS OF MANUFACTURING CERAMIC BODIES THEREFROM
A ceramic body exhibiting % P≥50%, df≤0.36, and a combined weight percentage of crystalline phases containing cordierite and indialite of at least 85 wt %, and up to 10 wt % of a crystalline pseudobrookite structured phase, such as armalcolite. The ceramic body contains, as expressed on an oxide basis, either: 1% wt % to 11% wt % titania and 89% wt % to 99% wt % MgO, Al2O3, and SiO2 that have relative weight ratios of MgO:Al2O3:SiO2 within the field defined by 15.6:34.0:50.4, 12.6:34.0:53.4, 13.9:30.7:55.4, and 16.9:30.7:52.4, or 2.5% to 11% titania and 89% wt % to 97.5% wt % MgO, Al2O3, and SiO2 that have relative weight ratios of MgO:Al2O3:SiO2 within the field defined by 15.6:34.0:50.4, 12.6:34.0:53.4, 12.0:35.7:52.3, and 15.0:35.7:49.3. Batch composition mixtures and methods of manufacturing ceramic bodies using the batch compositions are provided, as are other aspects.
CORDIERITE-INDIALITE-PSEUDOBROOKITE STRUCTURED CERAMIC BODIES, BATCH COMPOSITION MIXTURES, AND METHODS OF MANUFACTURING CERAMIC BODIES THEREFROM
MIT CORDIERIT-INDIALIT-PSEUDOBROOKIT STRUKTURIERTE KERAMIKKÖRPER, GEMENGEZUSAMMENSETZUNGEN UND VERFAHREN ZUR HERSTELLUNG KERAMISCHER KÖRPER DARAUS
CORPS CÉRAMIQUES À STRUCTURE DE CORDIÉRITE-INDIALITE-PSEUDOBROOKITE, MÉLANGES DE COMPOSITIONS ET PROCÉDÉ DE FABRICATION DE CORPS CÉRAMIQUES À PARTIR DE CEUX-CI
SARMA HUTHAVAHANA KUCHIBHOTLA (author) / TANNER CAMERON WAYNE (author)
2021-07-07
Patent
Electronic Resource
English
IPC:
C04B
Kalk
,
LIME
European Patent Office | 2021
|European Patent Office | 2024
|European Patent Office | 2020
|European Patent Office | 2021
|European Patent Office | 2024
|