A platform for research: civil engineering, architecture and urbanism
SEDIMENT COLLAPSE DETECTION SYSTEM
PROBLEM TO BE SOLVED: To provide a sediment collapse detection system capable of being inexpensively installed with a simple configuration and surely detecting collapse of sediment.SOLUTION: A sediment collapse detection system comprises: a light source unit 23 for originating an optical signal to an optical fiber core wire 22A; a light reception unit 24 for receiving an optical signal from an optical fiber core wire 22B; and an optical fiber cable 16 obtained by inserting the optical fiber core wires 22A, 22B including a forward path part for transmitting the optical signal originated from the light source unit 23 and a return path part for transmitting the optical signal to the light reception unit 24 into a metal pipe 21. The metal pipe 21 includes low strength parts 21A, at which the metal pipe 21 is to be easily deformed when receiving external force, at a plurality of locations in the longer direction. The forward path part and the return path part have a folding back loop 22C at one end of the optical fiber cable 16; the forward path part and the return path part are connected to the light source unit 23 and the light reception unit 24, respectively. In the case of collapse of sediment, disconnection of the optical fiber core wires 22A, 22B accompanying deformation of the metal pipe 21 at a low strength part 21A is detected on the basis of interception of the optical signal at the light reception unit 24.
【課題】構成が簡素で安価に設置でき、土砂の崩落を確実に検知できる土砂崩落検知システムを提供する。【解決手段】光ファイバ心線22Aに光信号を発信する光源部23と、光ファイバ心線22Bから光信号を受信する光信号を受信する受光部24と、光源部23から発信された光信号を伝達する往路部及び光信号を受光部24へ伝達する復路部を有する光ファイバ心線22A,22Bが金属管21に挿通された光ファイバケーブル16とを備え、金属管21は、長手方向にわたる複数箇所に、外力を受けた場合に金属管21の変形を容易とする低強度部21Aが設けられており、往路部と復路部が一端で折返しループ22Cを有し、光ファイバケーブル16の他端で往路部が光源部23に、復路部が受光部24にそれぞれ接続され、土砂の崩落時に金属管21の低強度部21Aでの変形に伴う光ファイバ心線22A,22Bの断線を受光部24における光信号の遮断により検知する。【選択図】図3
SEDIMENT COLLAPSE DETECTION SYSTEM
PROBLEM TO BE SOLVED: To provide a sediment collapse detection system capable of being inexpensively installed with a simple configuration and surely detecting collapse of sediment.SOLUTION: A sediment collapse detection system comprises: a light source unit 23 for originating an optical signal to an optical fiber core wire 22A; a light reception unit 24 for receiving an optical signal from an optical fiber core wire 22B; and an optical fiber cable 16 obtained by inserting the optical fiber core wires 22A, 22B including a forward path part for transmitting the optical signal originated from the light source unit 23 and a return path part for transmitting the optical signal to the light reception unit 24 into a metal pipe 21. The metal pipe 21 includes low strength parts 21A, at which the metal pipe 21 is to be easily deformed when receiving external force, at a plurality of locations in the longer direction. The forward path part and the return path part have a folding back loop 22C at one end of the optical fiber cable 16; the forward path part and the return path part are connected to the light source unit 23 and the light reception unit 24, respectively. In the case of collapse of sediment, disconnection of the optical fiber core wires 22A, 22B accompanying deformation of the metal pipe 21 at a low strength part 21A is detected on the basis of interception of the optical signal at the light reception unit 24.
【課題】構成が簡素で安価に設置でき、土砂の崩落を確実に検知できる土砂崩落検知システムを提供する。【解決手段】光ファイバ心線22Aに光信号を発信する光源部23と、光ファイバ心線22Bから光信号を受信する光信号を受信する受光部24と、光源部23から発信された光信号を伝達する往路部及び光信号を受光部24へ伝達する復路部を有する光ファイバ心線22A,22Bが金属管21に挿通された光ファイバケーブル16とを備え、金属管21は、長手方向にわたる複数箇所に、外力を受けた場合に金属管21の変形を容易とする低強度部21Aが設けられており、往路部と復路部が一端で折返しループ22Cを有し、光ファイバケーブル16の他端で往路部が光源部23に、復路部が受光部24にそれぞれ接続され、土砂の崩落時に金属管21の低強度部21Aでの変形に伴う光ファイバ心線22A,22Bの断線を受光部24における光信号の遮断により検知する。【選択図】図3
SEDIMENT COLLAPSE DETECTION SYSTEM
土砂崩落検知システム
SUDO YASUSHI (author) / YAMAMOTO KAZUTO (author) / YOSHIOKA HIROYUKI (author) / ITO RYUICHI (author)
2015-11-05
Patent
Electronic Resource
Japanese
European Patent Office | 2018
|Supplied Sediment Tracking for Bridge Collapse with Large-Scale Channel Migration
DOAJ | 2020
|